• Title/Summary/Keyword: abiotic

Search Result 695, Processing Time 0.034 seconds

Isolation and Characterization of Cinnamoyl-CoA Reductase Gene from Panax ginseng C. A. Meyer

  • Parvin, Shohana;Pulla, Rama Krishna;Shim, Ju-Sun;Kim, Yu-Jin;Jung, Dea-Yeoung;Kim, Se-Hwa;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.232-237
    • /
    • 2008
  • Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) catalyses the reduction of cinnamic acid CoA esters into their corresponding aldehydes, the first step of the phenylpropanoid pathway specially dedicated to monolignol biosynthesis. A cDNA clones encoding CCR have been isolated from Panax ginseng C.A. Meyer and its expression was investigated in response to abiotic stresses. The cDNA, designated PgCCR which is 865 nucleotides long and has an open reading frame of 590 bp with a deduced amino acid sequence of 176 residues. The PgCCR encoded protein possesses substantial homology with CCRs isolated and cloned from other sources; the highest identity (51.8%) was observed with CCR from Tomato (Lycopersicon esculentum). Under various stress conditions, expression patterns of the PgCCR were highly induced in adventitious and hairy roots by several abiotic stresses. These results indicated that PgCCR plays protective role against diverse environmental stresses.

Defense Genes Induced by Pathogens and Abiotic Stresses in Panax ginseng C.A. Meyer

  • Lee, Ok-Ran;Sathiyaraj, Gayathri;Kim, Yu-Jin;In, Jun-Gyo;Kwon, Woo-Seang;Kim, Ju-Han;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Korean ginseng is a medicinally important perennial herb from the family Araliaceae. It has been cultivated for its highly valued medicinal properties for over 1,000 years in east Asian countries such as China, Korea, and Japan. Due to its longtime cultivation in shady areas, ginseng is frequently exposed to pathogenic infections. Plants protect themselves from microbial pathogens using an array of defense mechanisms, some of which are constitutively active, while others are activated upon pathogen invasion. These induced defense responses, controlled by defense-related genes, require tradeoffs in terms of plant fitness. We hypothesize that ginseng, as with other plants, possesses regulatory mechanisms that coordinate the activation of attacker-specific defenses in order to minimize fitness costs while attaining optimal resistance. Several classes of defense-related genes are induced by infection, wounds, irradiation, and other abiotic stresses. Both salicylates and jasmonates have been shown to cause such responses, although their specific roles and interactions in signaling and development are not fully understood in ginseng. This review summarizes possible defense-related genes in ginseng based on their expression patterns against biotic and abiotic stresses and describes their functional roles.

Isolation of Sesquiterpene Synthase Homolog from Panax ginseng C.A. Meyer

  • Khorolragchaa, Altanzul;Parvin, Shohana;Shim, Ju-Sun;Kim, Yu-Jin;Lee, Ok-Ran;In, Jun-Gyo;Kim, Yeon-Ju;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • Sesquiterpenes are found naturally in plants and insects as defensive agents or pheromones. They are produced in the cytosolic acetate/mevalonate pathway for isoprenoid biosynthesis. The inducible sesquiterpene synthases (STS), which are responsible for the transformation of the precursor farnesyl diphosphate, appear to generate very few olefinic products that are converted to biologically active metabolites. In this study, we isolated the STS gene from Panax ginseng C.A. Meyer, designated PgSTS, and investigated the correlation between its expression and various abiotic stresses using real-time PCR. PgSTS cDNA was observed to be 1,883 nucleotides long with an open reading frame of 1,707 bp, encoding a protein of 568 amino acids. The molecular mass of the mature protein was determined to be 65.5 kDa, with a predicted isoelectric point of 5.98. A GenBank BlastX search revealed the deduced amino acid sequence of PgSTS to be homologous to STS from other plants, with the highest similarity to an STS from Lycopersicon hirsutum (55% identity, 51% similarity). Real-time PCR analysis showed that different abiotic stresses triggered significant induction of PgSTS expression at different time points.

Induced Tolerance to Salinity Stress by Halotolerant Bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in Tomato Plants

  • Yoo, Sung-Je;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1124-1136
    • /
    • 2019
  • Salinity is one of the major abiotic stresses that cause reduction of plant growth and crop productivity. It has been reported that plant growth-promoting bacteria (PGPB) could confer abiotic stress tolerance to plants. In a previous study, we screened bacterial strains capable of enhancing plant health under abiotic stresses and identified these strains based on 16s rRNA sequencing analysis. In this study, we investigated the effects of two selected strains, Bacillus aryabhattai H19-1 and B. mesonae H20-5, on responses of tomato plants against salinity stress. As a result, they alleviated decrease in plant growth and chlorophyll content; only strain H19-1 increased carotenoid content compared to that in untreated plants under salinity stress. Strains H19-1 and H20-5 significantly decreased electrolyte leakage, whereas they increased $Ca^{2+}$ content compared to that in the untreated control. Our results also indicated that H20-5-treated plants accumulated significantly higher levels of proline, abscisic acid (ABA), and antioxidant enzyme activities compared to untreated and H19-1-treated plants during salinity stress. Moreover, strain H20-5 upregulated 9-cisepoxycarotenoid dioxygenase 1 (NCED1) and abscisic acid-response element-binding proteins 1 (AREB1) genes, otherwise strain H19-1 downregulated AREB1 in tomato plants after the salinity challenge. These findings demonstrated that strains H19-1 and H20-5 induced ABA-independent and -dependent salinity tolerance, respectively, in tomato plants, therefore these strains can be used as effective bio-fertilizers for sustainable agriculture.

Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on Growth Promotion and Alleviation of Heat and Drought Stresses in Chinese Cabbage

  • Shin, Da Jeong;Yoo, Sung-Je;Hong, Jeum Kyu;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.178-187
    • /
    • 2019
  • Plants are exposed to biotic stresses caused by pathogen attack and complex abiotic stresses including heat and drought by dynamic climate changes. To alleviate these stresses, we investigated two bacterial stains, H26-2 and H30-3 in two cultivars ('Ryeokkwang' and 'Buram-3-ho') of Chinese cabbage in plastic pots in a greenhouse. We evaluated effects of bacterial strains on plant growth-promotion and mitigation of heat and drought stresses; the role of exopolysaccharides as one of bacterial determinants on alleviating stresses; biocontrol activity against soft rot caused by Pectobacterium carotovorum subsp. carotovorum PCC21. Strains H26-2 and H30-3 significantly increased fresh weights compared to a $MgSO_4$ solution; reduced leaf wilting and promoted recovery after re-watering under heat and drought stresses. Chinese cabbages treated with H26-2 and H30-3 increased leaf abscisic acid (ABA) content and reduced stomatal opening after stresses treatments, in addition, these strains stably colonized and maintained their populations in rhizosphere during heat and drought stresses. As well as tested bacterial cells, exopolysaccharides (EPS) of H30-3 could be one of bacterial determinants for alleviation of tested stresses in Chinese cabbages, however, the effects were different to cultivars of Chinese cabbages. In addition to bacterial activity to abiotic stresses, H30-3 could suppress incidence (%) of soft rot in 'Buram-3-ho'. The tested strains were identified as Bacillus aryabhattai H26-2 and B. siamensis H30-3 based on 16S rRNA gene sequence analysis. Taken together, H26-2 and H30-3 could be candidates for both plant growth promotion and mitigation of heat and drought stresses in Chinese cabbage.

Life Cycle Assessment on the Reuse of Glass Bottles (유리병 재사용에 대한 전과정평가)

  • Kim, Hyung-Jin;Kwon, Young-Shik;Choi, Yoon-Geun;Chung, Chan-Kyo;Baek, Seung-Hyuk;Kim, Young-Woo
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.224-230
    • /
    • 2009
  • Life Cycle Assessment (LCA) has been studied on the reuse of glass bottles. The system boundary in this study encompassed from gate to gate such as production and transportation. A 360 mL volume of a glass bottle was selected as the functional unit. The environmental impact assessments was studied on 6 categories including abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion, and photochemical oxidant creation. The results showed that the most significant impact categories were abiotic resource depletion (48.63%) and global warming (46.27%), and the rest categories revealed insignificant impacts. In the whole system, the chemicals used for the new bottle production revealed the major contribution to the environmental impacts (71.24%), followed by the use of electricity (16.74%) and transportation (11.8%). In addition, the environmental impact of sodium silicate to be put into the stage of the new bottle production was found to be 45.68%, causing severe influence on abiotic resource depletion and global warming.

Analysis of Gene-specific Molecular Markers for Biotic and Abiotic Stress Resistance in Tropically adapted Japonica Rice Varieties

  • Jung-Pil Suh;Sung-Ryul Kim;Sherry Lou Hechanova;Marianne Hagan;Graciana Clave;Myrish Pacleb
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.292-292
    • /
    • 2022
  • Since 1992, the Rural Development Administration (RDA), Republic of Korea in collaboration with International Rice Research Institute (IRRI) has developed 6 japonica rice varieties(MS11, Japonica 1, 2, 6, 7 and Cordillera 4) that are adaptable to tropical regions. However, these varieties show moderate resistance or susceptibility to certain biotic and abiotic stress. The development of varieties with more stable forms of resistance is highly desirable, and this could be possibly achieved through rapid introgression of known biotic and abiotic resistant genes. In this study, we analyzed the allele types of major biotic stress resistant genes including Xa5, Xa13, Xa21 and Xa25 for bacterial leaf blight, Pi5, Pi40, Pish and Pita2 for blast, tsv1 for rice tungro spherical virus, and Bph6, Bph9, Bph17, Bph18 and Bph32 for brown planthopper by using gene-specific molecular markers. In addition, seed quality related genes Sdr4 for preharvest sprouting and qLG-9 for seed longevity were also analyzed. The results revealed that2h5 and Xa25 resistance alleles showed in all varieties while Pi5 resistance allele showed only in MS11. The Pish resistance allele were present in five varieties except for Japonica 1. Meanwhile, for the rest of the genes, no presence of resistance alleles found in six varieties. In conclusions, most of tropical japonica varieties are lack of the major biotic stress resistant genes and seed quality genes (Sdr4 and qLG-9). Moreover, the results indicated that rapid deployment of a few major genes in the current tropical japonica rice varieties is urgent to increase durability and spectrum of biotic stress resistance and also seed dormancy/longevity which are essential traits for tropical environments.

  • PDF

GWAS of Salt Tolerance and Drought Tolerance in Korean Wheat Core Collection

  • Ji Yu Jeong;Kyeong Do Min;Jae Toon Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.195-195
    • /
    • 2022
  • Abiotic stress is a major problem in global agriculture as it negatively affects crop growth, yield, and quality. Wheat (Triticum aestivum) is the world's second-highest-producing food resource, so the importance of mitigating damage caused by abiotic stress has been emerging. In this study, we performed GWAS to search for SNPs associated with salt tolerance and drought tolerance. NaCl (200 mM) treatment was performed at the seedling stage using 613 wheat varieties in Korean wheat core collection. Root length, root surface area, root average diameter, and root volume were measured. Drought stress was applied at the seedling stage, and the above phenotypes were measured. GW AS was performed for each phenotype data using the MLM, MLMM, and FarmCPU models. The best salt-tolerant wheat varieties were 'MK2402', 'Gyeongnam Geochang-1985-3698', and 'Milyang 13', showing superior root growth. The significant SNP AX-94704125 (BA00756838) were identified in all models. The genes closely located to the significant SNP were searched within ± 250 kb of the corresponding SNP. A total of 11 genes were identified within the region. NB-ARC involved in the defense response, FKSI involved in cell wall biosynthesis, and putative BP Ml involved in abiotic stress responses were discovered in the 11 genes. The best drought-tolerant wheat varieties were 'PI 534284', 'Moro of Sind', and 'CM92354-33M-0Y-0M-6Y-0B-0BGD', showing superior root growth. This study discovered SNPs associated with salt tolerance in Korean wheat core collection through GWAS. GWAS of drought tolerance is now proceeding, and the GWAS results will be represented on a poster. The SNPs identified by GWAS can be useful for studying molecular mechanisms of salt tolerance and drought tolerance in wheat.

  • PDF

'Kowon', a New Korean Ginseng Cultivars with High Yield and Alternaria Blight Resistance

  • Kim, Young Chang;Kim, Jang Uk;Lee, Jung Woo;Hong, Chi Eun;Bang, Kyong Hwan;Kim, Dong Hwi;Hyun, Dong Yun;Choi, Jin Kook;Seong, Bong Jae;An, Young Nam;Jeong, Haet Nim;Jo, Ick Hyun
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Recently, there has been increased attention to the development of new plant cultivars with enhanced resistance to biotic and abiotic stress. To develop ginseng cultivars with such traits, systematic breeding programs and comprehensive field studies are prerequisites. In this study, we applied a pure-line selection method to identify a ginseng cultivar with enhanced stress resistance. Phenotypic and agronomic characteristics, seed yield, and physiological responses to biotic and abiotic stresses were investigated according to the guidelines of the International Union for the Protection of New Varieties of Plants (UPOV). In the newly developed 'Kowon' cultivar, the time of emergence, flowering, and berry maturity were intermediate between those of the controls, 'Yunpoong' and 'Chunpoong'. The stem length of 'Kowon' was intermediate, whereas the root length was shorter and the main root diameter was greater than those of 'Chunpoong'. In local adaptability tests conducted in three regions, the yield of 'Kowon' was $666kg{\cdot}10a^{-1}$; 27% and 4% higher than that of 'Chunpoong' and 'Yunpoong'. Diseases such as Alternaria blight, Phytophthora blight, mulberry mealybug, and nematode infestation did not occur in 'Kowon'; and it also exhibited moderate resistance to damping-off and anthracnose. In these cases, yellow spots occurred on aerial parts and the rusty skin of the root, and it exhibited moderate resistance at high temperatures. Our study demonstrates that 'Kowon', which has a high root weight and enhanced biotic/abiotic stress resistance, is a superior cultivar that could increase farmers' income.

Isolation of Cysteine Proteinase Gene (PgCysP1) from Panax ginseng and Response of This Gene to Abiotic Stresses (인삼으로부터 Cysteine Proteinase 유전자의 분리 및 환경 스트레스에 대한 반응)

  • Jeong, Dae-Young;Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • Cysteine proteinases play an essential role in plant growth and development but also in senescence and programmed cell death. They participate in both anabolic and catabolic processes. In addition, they are involved in signalling pathways and in the response to biotic and abiotic stresses. A cDNA clone encoding cysteine proteinase (CP) gene, designated PgCysP1, was isolated from Panax ginseng C. A. Meyer. Reverse transcriptase (RT)-PCR results showed that PgCysP1 expressed at different level in P. ginseng hairy root. Different stresses such as biotic as well as abiotic stresses triggered a significant induction of PgCysP1. The positive responses of PgCysP1 to the various stimuli suggested that PgCysP1 may help to protect the plant against reactive environmental stresses.