• Title/Summary/Keyword: abelian p-group

Search Result 38, Processing Time 0.028 seconds

REPRESENTATIONS OF THE BRAID GROUP $B_4$

  • Lee, Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.673-693
    • /
    • 1997
  • In this work, the irreducible complex representations of degree 4 of $B_4$, the braid group on 4 strings, are classified. There are 4 families of representations: A two-parameter family of representations for which the image of $P_4$, the pure braid group on 4 strings, is abelian; two families of representations which are the composition of an irreducible representation of $B_3$, the braid group on 3 strings, with a certain special homomorphism $\pi : B_4 \longrightarrow B_3$; a family of representations which are the tensor product of 2 irreducible two-dimensional representations of $B_4$.

  • PDF

ON U-GROUP RINGS

  • Osba, Emad Abu;Al-Ezeh, Hasan;Ghanem, Manal
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1075-1082
    • /
    • 2018
  • Let R be a commutative ring, G be an Abelian group, and let RG be the group ring. We say that RG is a U-group ring if a is a unit in RG if and only if ${\epsilon}(a)$ is a unit in R. We show that RG is a U-group ring if and only if G is a p-group and $p{\in}J(R)$. We give some properties of U-group rings and investigate some properties of well known rings, such as Hermite rings and rings with stable range, in the presence of U-group rings.

An improved version of vitali-hahn-saks theorem

  • Hwang, Hong-Taek;Yoo, Won-Sok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.481-485
    • /
    • 1996
  • Let G be an abelian topological group and $x_{ij} \in G$ for all $i, j \in N$ such that the series $\sum_{j=i}^{\infty} x_{ij}$ is subseries convergent for each i.

  • PDF

UNIT KILLING VECTORS AND HOMOGENEOUS GEODESICS ON SOME LIE GROUPS

  • Yi, Seunghun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.291-297
    • /
    • 2006
  • We find unit Killing vectors and homogeneous geodesics on the Lie group with Lie algebra $\mathbf{a}{\oplus}_p\mathbf{r}$, where $\mathbf{a}$ and $\mathbf{r}$ are abelian Lie algebra of dimension n and 1, respectively.

  • PDF

COHOMOLOGY GROUPS OF CIRCULAR UNITS

  • Kim, Jae-Moon;Oh, Seung-Ik
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.623-631
    • /
    • 2001
  • Let $\kappa$ be a real abelian field of conductor f and $\kappa$(sub)$\infty$ = ∪(sub)n$\geq$0$\kappa$(sub)n be its Z(sub)p-extension for an odd prime p such that płf$\phi$(f). he aim of this paper is ot compute the cohomology groups of circular units. For m>n$\geq$0, let G(sub)m,n be the Galois group Gal($\kappa$(sub)m/$\kappa$(sub)n) and C(sub)m be the group of circular units of $\kappa$(sub)m. Let l be the number of prime ideals of $\kappa$ above p. Then, for mm>n$\geq$0, we have (1) C(sub)m(sup)G(sub)m,n = C(sub)n, (2) H(sup)i(G(sub)m,n, C(sub)m) = (Z/p(sup)m-n Z)(sup)l-1 if i is even, (3) H(sup)i(G(sub)m,n, C(sub)m) = (Z/P(sup)m-n Z)(sup l) if i is odd (※Equations, See Full-text).

  • PDF

COMMUTING AUTOMORPHISM OF p-GROUPS WITH CYCLIC MAXIMAL SUBGROUPS

  • Vosooghpour, Fatemeh;Kargarian, Zeinab;Akhavan-Malayeri, Mehri
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.643-647
    • /
    • 2013
  • Let G be a group and let $p$ be a prime number. If the set $\mathcal{A}(G)$ of all commuting automorphisms of G forms a subgroup of Aut(G), then G is called $\mathcal{A}(G)$-group. In this paper we show that any $p$-group with cyclic maximal subgroup is an $\mathcal{A}(G)$-group. We also find the structure of the group $\mathcal{A}(G)$ and we show that $\mathcal{A}(G)=Aut_c(G)$. Moreover, we prove that for any prime $p$ and all integers $n{\geq}3$, there exists a non-abelian $\mathcal{A}(G)$-group of order $p^n$ in which $\mathcal{A}(G)=Aut_c(G)$. If $p$ > 2, then $\mathcal{A}(G)={\cong}\mathbb{Z}_p{\times}\mathbb{Z}_{p^{n-2}}$ and if $p=2$, then $\mathcal{A}(G)={\cong}\mathbb{Z}_2{\times}\mathbb{Z}_2{\times}\mathbb{Z}_{2^{n-3}}$ or $\mathbb{Z}_2{\times}\mathbb{Z}_2$.

WEAK AMENABILITY OF CONVOLUTION BANACH ALGEBRAS ON COMPACT HYPERGROUPS

  • Samea, Hojjatollah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.307-317
    • /
    • 2010
  • In this paper we find necessary and sufficient conditions for weak amenability of the convolution Banach algebras A(K) and $L^2(K)$ for a compact hypergroup K, together with their applications to convolution Banach algebras $L^p(K)$ ($2\;{\leq}\;p\;<\;{\infty}$). It will further be shown that the convolution Banach algebra A(G) for a compact group G is weakly amenable if and only if G has a closed abelian subgroup of finite index.

COMPLEX BORDISM OF CLASSIFYING SPACES OF THE DIHEDRAL GROUP

  • Cha, Jun Sim;Kwak, Tai Keun
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.185-193
    • /
    • 1997
  • In this paper, we study the $BP_*$-module structure of $BP_*$(BG) mod $(p,v_1,{\cdots})^2$ for non abelian groups of the order $p^3$. We know $grBP_*(BG)=BP_*{\otimes}H(H_*(BG);Q_1){\oplus}BP^*/(p,v_1){\otimes}ImQ_1$. The similar fact occurs for $BP_*$-homology $grBP_*(BG)=BP_*s^{-1}H(H_*(BG);Q_1){\oplus}BP_*/(p,v)s^{-1}H^{odd}(BG)$ by using the spectral sequence $E^{*,*}_2=Ext_{BP^*}(BP_*(BG),BP^*){\Rightarrow}BP^*(BG)$.

  • PDF

THICKLY SYNDETIC SENSITIVITY OF SEMIGROUP ACTIONS

  • Wang, Huoyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1125-1135
    • /
    • 2018
  • We show that for an M-action on a compact Hausdorff uniform space, if it has at least two disjoint compact invariant subsets, then it is thickly syndetically sensitive. Additionally, we point out that for a P-M-action of a discrete abelian group on a compact Hausdorff uniform space, the multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity.

ON A PERMUTABLITY PROBLEM FOR GROUPS

  • TAERI BIJAN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.75-96
    • /
    • 2006
  • Let m, n be positive integers. We denote by R(m,n) (respectively P(m,n)) the class of all groups G such that, for every n subsets $X_1,X_2\ldots,X_n$, of size m of G there exits a non-identity permutation $\sigma$ such that $X_1X_2{\cdots}X_n{\cap}X_{\sigma(1)}X_{/sigma(2)}{\cdots}X_{/sigma(n)}\neq\phi$ (respectively $X_1X_2{\cdots}X_n=X_{/sigma(1)}X_{\sigma(2)}{\cdots}X_{\sigma(n)}$). Let G be a non-abelian group. In this paper we prove that (i) $G{\in}P$(2,3) if and only if G isomorphic to $S_3$, where $S_n$ is the symmetric group on n letters. (ii) $G{\in}R$(2, 2) if and only if ${\mid}G{\mid}\geq8$. (iii) If G is finite, then $G{\in}R$(3, 2) if and only if ${\mid}G{\mid}\geq14$ or G is isomorphic to one of the following: SmallGroup(16, i), $i\in$ {3, 4, 6, 11, 12, 13}, SmallGroup(32, 49), SmallGroup(32, 50), where SmallGroup(m, n) is the nth group of order m in the GAP [13] library.