• Title/Summary/Keyword: ab initio simulation

Search Result 39, Processing Time 0.036 seconds

Modeling of CeO2, Ce2O3, PrO2, and Pr2O3 in GGA+U formalism

  • An, Gi-Yong;Yu, Dong-Su;Lee, Jong-Ho;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.435-435
    • /
    • 2011
  • The electronic structure and various physical properties of CeO2, Ce2O3, PrO2, and Pr2O3 have been studied from the framework of Ab-initio by the all-electron projector-augmented-wave (PAW) method, as implemented VASP (Vienna Ab-initio Simulation Package). The generalized gradient approximation (GGA) with effective U (Ueff) has been used to explain the strong on-site Coulomb repulsion among the localized Ce 4f electrons. The dependence of selected observables of these materials on the Ueff parameter has been scrutinized. The studied properties contain lattice constants, density of states, and reaction energies of CeO2, Ce2O3, PrO2, and Pr2O3. For CeO2 and PrO2, the GGA(PBE)+U results are in good agreement with experimental data whereas for the computational calculationally more demanding Ce2O3 and Pr2O3 both approaches give comparable accuracy. This results represent that by choosing an appropriate Ueff it is possible to reliably describe structural and electronic properties of CeO2, Ce2O3, PrO2, and Pr2O3, which enables modeling of oxygen reduction reaction processes involving ceria-based materials.

  • PDF

Creating Structure with Pymatgen Package and Application to the First-Principles Calculation (Pymatgen 패키지를 이용한 구조 생성 및 제일원리계산에의 적용)

  • Lee, Dae-Hyung;Seo, Dong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.556-561
    • /
    • 2022
  • Computational material science as an application of Density Functional Theory (DFT) to the discipline of material science has emerged and applied to the research and development of energy materials and electronic materials such as semiconductor. However, there are a few difficulties, such as generating input files for various types of materials in both the same calculating condition and appropriate parameters, which is essential in comparing results of DFT calculation in the right way. In this tutorial status report, we will introduce how to create crystal structures and to prepare input files automatically for the Vienna Ab initio Simulation Package (VASP) and Gaussian, the most popular DFT calculation programs. We anticipate this tutorial makes DFT calculation easier for the ones who are not experts on DFT programs.

Force Fields and Elastic Properties of Syndiotactic Isoregic Poly(viny1 fluoride) Crystal (Syndiotactic isoregic 폴리비닐플로라이드 결정의 Force Fields 및 Elastic Properties)

  • Geo, G;Lee, Jeong-Gu;Hong, Jin-Hu
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.792-797
    • /
    • 1994
  • Force fields of syndiotactic isoregic PVF crystal have been extracted by optimizing a structure of 2,4,6-trifluoroheptane with ab initio Quantum mechanical method with 6-31G * * basis set, and applied to calculate the structure parameters and elastic constants of the material. The cell parameters turned out to be 5.205$\AA$, of a axis(chain axis), 8.457$\AA$, of b axis and 4.621$\AA$ of c axis. These parameters are in fair agreement with those of the atactic X-ray structure(5.04$\AA$, 8.57$\AA$, and 4.95$\AA$,respectively). The young's modulus of defect free syndiotactic PVF crystal was computed to be 267 GPa comparable to those of polyvinilidene fluoride(277-293 GPa) and polyethylene(264-337 GPa) crystals. Bulk modulus value obtained at optimum geometry is more than twice greater than that obtained at experimental geometry due to large difference of elastic compliance constant (especially Sgj element) at these two different geometries.

  • PDF

The Radial Distribution Functions of the Scaled OSS2 Water

  • Lee, Song Hi
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.669-672
    • /
    • 2012
  • Classical molecular dynamics (MD) simulations using a scaled OSS2 potential originally derived from ab initio calculations are used to study the radial distribution functions of water. The original OSS2 water potential is shown to represent a glassy or an ice at ambient temperature, but the diffusion coefficient increases on increasing the temperature of the system or decreasing the density. This suggests scaling the OSS2 potential. The O-O, O-H, and H-H radial distribution functions and the corresponding coordination numbers for the scaled OSS2 potential, obtained by MD simulation, are in good agreement with the experiment results and calculations for the SPC/E water potential over a range of temperatures.

Ab initio calculation of half-metallic ferrocene-based nanowire

  • Kim, Seongmin;Park, Changhwi
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.425-429
    • /
    • 2014
  • Half-metallic nanostructure is highly applicable in the field of Spintronics and electronic device technology. We examine the electronic properties of a ferrocene-based nanowire as a possible candidate for a half-metallic nanostructure using VASP and SIESTA. Ferrocene-based nanowire shows high stability in both binding energy simulation and molecular dynamics (MD) simulation. The density of states (DOS) and the projected DOS of the ferrocene-based nanowire indicate that one-dimensional clustering of ferrocene molecules can be explained because of p-d orbital hybridization between iron and carbon. Half-metallic property and energy dispersion at the Fermi level due to one-dimensional structure is also observed from the DOS results.

  • PDF

Calculation of dielectric and Piezoelectric properties for Zinc-Oxide by Molecular Simulation (분자 시뮬레이션법에 의한 ZnO 유전.압전 특성 계산)

  • Roh, Hoi-Jong;Kim, Ji-Hwan;Park, Jeong-Ho;Ha, Duck-Yung;Ko, Kwang-Cheul;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1323-1325
    • /
    • 1997
  • The necessity of this work is described with present problems in the application of computer simulation methods to electrical material research. Author proposes and develops method which can calculate properties such as dielectric and piezoelectric constants for ZnO. The method based on ab-initio method. It is found that these properties can be calculated with a good precision by this method.

  • PDF

Ge(110) 표면에서 탄소 원자 확산에 대한 수소의 효과

  • Park, Ga-Ram;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.127.2-127.2
    • /
    • 2016
  • 연구된 Si위의 흡착원자들의 확산 메커니즘들에 비해 Ge 표면에서의 확산 메커니즘은 잘 알려져 있지 않다. 최근 연구에 따르면, 수소가 덮인 Ge(110) 표면에서 그래핀 결정 핵생성은 비등방적이며, 낟알 둘레없이 웨이퍼 크기로 성장시킬 수 있음을 보였다. 본 연구에서는 VASP(Vienna Ab-initio Simulation Package)의 NEB(Nudged Elastic Band) 방법을 이용하여 수소가 덮인 Ge(110) 표면과 청결한 표면에서 탄소원자의 확산 과정과 확산에 따른 에너지 장벽을 계산 하였다. 계산 결과 수소가 덮인 표면에서의 탄소원자 확산은 체인 방향으로 각각 3.29 eV, 2.67 eV의 에너지 장벽을 가지고 청결한 표면에서는 탄소원자가 게르마늄 연결을 치환하며 확산한다. 이때 에너지 장벽은 0.82 eV이고 치환된 게르마늄이 확산할 때는 각각 0.64 eV, 0.59 eV의 에너지 장벽을 넘어야 한다. 결과적으로 수소가 덮인 표면에서보다 청결한 표면에서 탄소 확산 에너지 장벽이 낮으며, 청결한 표면에서는 탄소가 게르마늄을 치환하고 치환된 게르마늄이 확산할 확률이 높음을 알 수 있었다.

  • PDF

Ca/Si(111)-2×1에서 에피성장을 통한 Si단결정 성장가능성에 관한 Si원자의 흡착과 확산에 대한 전산모사연구

  • Yeo, Gang-Mo;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.127.1-127.1
    • /
    • 2016
  • Si은 값싸고 넓은 시설기반을 갖추고 있어, 발전산업에서 태양광소자의 주원료로 널리 사용된다. 하지만 Si은 간접 띠틈을 Si의 특성을 개선하기 위해 최근 Si에 특정한 결함을 넣어 직접 띠틈으로 바꿔 광효율을 높이려는 시도가 있다. 2015년 초 Si단결정[111]으로 Seiwatz-chain 형태의 결함이 있다면 결함이 있는 Si(111)에 직접 띠틈이 생길 것 이라고 이론적으로 예상했다. 이러한 구조의 제작방법으로 Ca/Si(111)과 Si(111)을 접합 후 가열하여 Ca을 빼내는 방법을 제시했다[1]. 본 연구에서는 이 제작방법 외에 Ca/Si(111)-$2{\times}1$ 표면에서[2] 에피성장으로 결함이 유지된 Si단결정 형성가능성을 제일원리 계산을 통해 연구했다. 제일원리 계산방법으로는 VASP(Vienna Ab-initio Simulation Package)를 이용하였다. Si원자 한개, 두 개, 세 개가 흡착될 경우 원자당 흡착에너지는 각각 3.73 eV, 3.73 eV, 3.91 eV 였다. 따라서 Si원자는 무리형태로 흡착될 것으로 예상되어 결함을 유지하며 단결정으로 성장하기는 어려울 것으로 보인다.

  • PDF

Electronic State of ZnO doped with Al, Ga and In, Calculated by Density Functional Theory (범함수궤도법을 이용하여 계산한 Al, Ga, In이 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.218-221
    • /
    • 2004
  • The electronic state of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, was calculated using the density functional theory. In this study, the program used for the calculation on theoretical structures of ZnO and doped ZnO was Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The detail of electronic structure was obtained by the describe variational $X{\alpha}(DV-X{\alpha})$(DV-Xa) method, which is a sort of molecular orbital full potential method. The optimized crystal structures obtained by calculations were compared to the measured structure. The density of state and energy levels of dopant elements was shown and discussed in association with properties.

  • PDF

Molecular Dynamics Simulations on the Mechanical Behavior of Carbon Nanotube (탄소나노튜브의 역학적 거동에 관한 분자동역학 전산모사)

  • Park, Jong-Youn;Lee, Young-Min;Jun, Suk-Ky;Kim, Sung-Youb;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1083-1088
    • /
    • 2003
  • Molecular dynamics simulations on the deformation behavior of single-walled carbon nanotube are performed. Formation energies of CNT's by interatomic potentials are computed and compared with ab initio results. Bending and axial compression are applied under lattice statics and NVT ensemble conditions. Specifically, we focus on the mechanism of kink formation in bending. The simulation results are comprehensively explained in the framework of atomistic energetics. The effects of temperature and chirality on the deformation of carbon nanotube are also studied.

  • PDF