• Title/Summary/Keyword: a.c. impedance

Search Result 713, Processing Time 0.032 seconds

Permeability of CoZrNb film with thickness (CoZrNb막의 두께에 따른 투자율의 변화)

  • Hoe, J.;Kim, Y.H.;Shin, K.H.;Sa-Gong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.443-446
    • /
    • 2001
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field(H$\sub$k/) as a function of a thickness of sputtered amorphous CoZrNb thin film with high saturation magnetostriction and excellent soft magnetic property are investigated. In order to make a uniaxial anisotropy, thin film was subjected to post annealing with a static magnetic field with 1KOe intensity at 250, 300, and 320$^{\circ}C$ for 2 hour. Anisotropy field(H$\sub$k/)of thin film is measured by using MH loop tracer. Its magnetic permeability of thin film is measured over the frequency range from 1 MHz to 750MHz. It has shown that the magnetic permeability of amorphous CoZrNb thin film is decreased due to the skin effect with increasing a thickness of CoZrNb thin film, and hence its driving frequency is lowered.

  • PDF

Development of Powder Injection Mold for Dental Scaler Tip Using Stainless Series Powder (스테인레스계열(17-4PH, 316L, 440C) 분말을 이용한 Dental Scaler Tip 분말사출금형 개발)

  • Ko, Y.B.;Kim, J.S.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.61-66
    • /
    • 2007
  • Powder injection molding(PIM) is widely used for many parts in the field of automotives, electronics and medical industries, due to the capability of net shaping for complex 3-D geometry. Powder injection mold design for the dental scaler tip, a component of medical appliance, was presented. In comparison with conventional machining process, powder injection molding has many advantages, specially in price and dimensional stability, for molding dental scaler tip which has complex geometry. Both product design and mold design for dental scaler tip were presented. A PIM feedstock was made of stainless series(17-4PH, 316L, 440C) powder and a wax based binder. The 'rapid mold' concept was applied to manufacture the various forms and materials of dental scaler tip including vibration characteristics.

A Novel Built-In Self-Test Circuit for 5GHz Low Noise Amplifiers (5GHz 저잡음 증폭기를 위한 새로운 Built-In Self-Test 회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1089-1095
    • /
    • 2005
  • This paper presents a new low-cost Built-In Self-Test (BIST) circuit for 50Hz low noise amplifier (LNA). The BIST circuit is designed for system-on-chip (SoC) transceiver environment. The proposed BIST circuit measures the LNA specifications such as input impedance, voltage gaih, noise figure, and input return loss all in a single SoC environment.

Determination of Low-temperature Electrochemical Properties of Selected Cation-exchange Membranes for Cathodic Protection Analysis

  • Ko, Moon-Young;Kwon, Byeong-Min;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.8-12
    • /
    • 2008
  • The electrochemical properties of Nafion type membranes as a function of temperature to examine the key factors affecting the cathodic protection process at low temperatures was investigated in this study. Variable temperature experiments for AC impedance, DC resistance were conducted. The resistances of 3 Nafion membranes (N 324, N 450, N MAC) were measured in 30% KOH (aq) for a range of temperatures between $-30^{\circ}C$ and room temperature. Membrane resistance increases exponentially with decreasing temperature. This behaviour is most significant at operational temperatures below $0^{\circ}C$. These membranes are stable under the low temperature and caustic conditions of the heat exchange system, but they place a much higher restriction on the cathodic protection of the stainless heat exchange stack. N 450 has the lowest AC impedence and DC resistance at temperatures below $0^{\circ}C$ and consequently is most suitable membrane of the three, for low temperature applications.

Ionic Conductivity by A Complex Admittance Method

  • Chy Hyung Kim;Eung Dong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.495-500
    • /
    • 1989
  • The ionic conductivity of polycrystalline, glass, and glass-ceramic silicates was measured using two-terminal AC method with blocking electrode over a frequency range of 100 Hz to 100 KHz in the temperature range of $200^{\circ}C$ to $320^{\circ}C$. Analysing the capacitance (C), susceptance (B), impedance (Z), and conductance (G) under the given conditions, an equivalent circuit containing temperature and frequency dependent component is proposed. Higher capacitance could be observed in the low frequency region and on the improved ionic migration conditions i.e., at higher temperature in a better ionic conductor. Also the electrode polarization built up at the electrode-specimen interface could be sorted out above 10 KHz. However, grain boundary contribution couldn't be extracted from the bulk resistance over the frequency range measured here.

Frequency Characteristics of Anodic Oxide Films: Effects of Anodization Valtage

  • Lee, Dong-Nyung;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 1974
  • Effects of anodization voltage on frequency characteristics of anodic oxide films on tantalum were analyzed based on the following impedance equatious : (equation omitted) Here $R_{f}$, $C_{f}$ and tan $\delta$$_{f}$ are equivalent series resistance in ohm, equivalent Belies capacitance in farad and dielectric loss, of anodic oxide films respectively Parameters P, $\tau$$_{ο}$, $\tau$$_{\omega}$, and Co are defined as follows: P=(d-w)/w, $\tau$$_{ο}$=$textsc{k}$$\rho$$_{ο}$, $\tau$$_{\omega}$=$textsc{k}$$\rho$$_{\omega}$, $C_{ο}$=$textsc{k}$A/d where d is the thickness of oxide film, $\omega$ is the diffusion layer thickness. $\rho$$_{ο}$ is the resistivity of oxide film at the interface of metal and the oxide, $\rho$$_{\omega}$ is the resistivity of oxide film at intrinsic region and A is the area of the film and $textsc{k}$=0.0885$\times$10$^{-12}$ $\times$dielectric constant, (in farad/cm). It was shown that dielectric loss and frequency dependence of equivalent series capacitance decrease as anodization voltage increases. This is a consequence of the fact that the thickness of diffusion layer increases a little with increasing anodization voltage whereas the total oxide thickness is proportional to the anodization voltage. The ngative deviation of measured values from tile relation, tan $\delta$$_{f}$=0.682 $\Delta$ $C_{f}$, was also discussed based on the Impedance equations given above. Here $\Delta$ $C_{f}$ is the change in capacitance between 0.1 and 1 KHZ.KHZ.Z.

  • PDF

IN-VITRO CHARACTERIZATION OF THE THROMBOTIC POTENTIAL OF WHOLE BLOOD USING AN IMPEDANCE METHOD

  • Granaderos, Carlo;Park, Joong-Chun;Pak, Bock-Choon;Kim, Cheol-Sang;Cho, Young-I
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2785-2790
    • /
    • 2007
  • This study presents an impedance method of in-vitro characterization of the thrombotic potential of whole blood. Whole blood samples of 0.2 cc were put into a micro-cell with embedded three electrodes immediately after venepuncture at $37^{\circ}C$. Anti-coagulated blood samples were also collected for hematocrit and blood viscosity analyses. The rate of change of electron flow was measured, which indicates the inverse of the thrombotic potential. A sudden decrease in the rate of change of electron flow was observed at a time equal to approximately 110 seconds. This sudden decrease was significantly delayed in anti-coagulated samples. After the sudden decrease, the rate continued to decrease, reaching a minimum value in unadulterated samples while the change in the rate in the anti-coagulated ones was found rather moderate. Based on these preliminary findings, the present method may be of used as a new tool for the diagnosis of the thrombotic potential of whole blood.

  • PDF

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

Low Temperature Sintering and Electrical Properties of Bi-based ZnO Chip Varistor (Bi계 ZnO 칩 바리스터의 저온소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.876-881
    • /
    • 2011
  • The sintering, defect and grain boundary characteristics of Bi-based ZnO chip varistor (1,608 mm size) have been investigated to know the possibility of lowering a manufacturing price by using 100 % Ag inner-electrode. The samples were prepared by general multilayer chip varistor process and characterized by shrinkage, SEM, current-voltage (I-V), admittance spectroscopy (AS), impedance and modulus spectroscopy (IS & MS) measurement. There are no problems to make a chip varistor with 100% Ag inner-electrode in the sintering temperature range of 850~900$^{\circ}C$ for 1 h in air. A good varistor characteristics ($V_n$= 9.3~15.4 V, a= 23~24, $I_L$= 1.0~1.6 ${\mu}A$) were revealed but formed $Zn_i^{{\cdot}{\cdot}}$(0.209 eV) as dominant defect, and increased the distributional inhomogeneity and the temperature instability in grain boundary barriers.

The Inhibitive Effect of Poly(p-Anisidine) on Corrosion of Iron in 1M HCl Solutions

  • Manivel, P.;Venkatachari, G.
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.51-55
    • /
    • 2005
  • The corrosion inhibitive effect of Poly (p-Anisidine) on iron in 1M HCl with various concentrations were studied by using electrochemical methods such as impedance measurements and polarization techniques. The inhibition efficiency (IE) of Poly (p- Anisidine) was compared with its monomer and it was observed that there is a remarkable increase for the polymer. Further, it is found that the value of IE increases with increasing concentrations for both monomer and polymer of p-Anisidine.