• Title/Summary/Keyword: a-glucosidase activity

Search Result 657, Processing Time 0.027 seconds

$\alpha$-Glucosidase Inhibition by Culture Broth of Streptomyces sp. NS15 (Streptomyces sp. NS15 배양액에 의한 $\alpha$-Glucosidase 저해)

  • 백남수;김영만
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.640-646
    • /
    • 1998
  • For the production of nonprotein $\alpha$-glucosidase inhibitor from the Streptomyces sp. NS15 strain, effects of initial optimum pH, nitrogen sources, carbon sources, cationic metal ions, agitation speed and aeration rate were investigated. Initial optimum pH of medium was 7.0. The most effective nitrogen and carbon sources were soybean meal 2.0%(w/v) and glucose 1.6%(w/v), respectively. The cationic metal ins had no stimulating effect on inhibitory activity of $\alpha$-glucosidase except Fe2+. Agitation speed and aeration rate were effective at 400rpm and 1vvm, respectively. In the jar-fermenter cultivation for 4 days under optimal culture conditions, the culture broth showed the inhibitory acitivity of 3,200units/ml, which is 25 times higher than that of basic medium (CYM) for porcine intestinal $\alpha$-glucosidase. The inhibitory activity of $\alpha$-glucosidase reached about 3,200units/ml after 4 days of cultivation and decreased gradually for a further two days.

  • PDF

Assay of ${\beta}$-Glucosidase Activity of Bifidobacteria and the Hydrolysis of Isoflavone Glycosides by Bifidobacterium sp. Int-57 in Soymilk Fermentation

  • Jeon, Ki-Suk;Ji, Geun-Eog;Hwang, In-Kyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2002
  • The isoflavone glycosides are hydrolyzed by ${\beta}$-glucosidase from gut microbes to the bioactive aglycones. However, the specific bacteria from the human intestinal tract that are involved in the metabolism of these compounds are not known. This study was undertaken to develop a fermented soymilk which converts isoflavones to the more bioactive aglycones form using a Bifidobacterium strain. The ${\beta}$-glucosidase activity of 15 Bifidobacterium strains were measured during cell growth. Among them, Bifidobacterium sp. Int-57 was selected for this study, because it has the highest ${\beta}$-glucosidase activity. Growth, acid development, ${\beta}$-glucosidase activity, and the hydrolysis of daidzin and genistin were investigated in four soymilks inoculated with Bifidobacterium sp. Int-57. After 12 h of fermentation, the counts of viable Bifidobacterium sp. Int-57 in all the soymilks reached a level of more than $10^8$ cfu/ml, which was then maintained. The pH of soymilks started to decrease rapidly after 6 h of fermentation and leveled off after 18 h. The titratable acidity of BL# 1 soymilk, BL#2 soymilk, and JP#l soymilk increased from 0.18 to 1.21, 1.15, and $1.08\%$ over the fermentation period, respectively. After 24 h of fermentation, the $\beta$-glucosidase activity in BL#1 soymilk, BL#2 soymilk, JP#l soymilk, and JP#2 soymilk increased to 59.528, 40.643, 70.844, and 56.962 mU/ml, respectively. The isoflavone glycosides, daidzin and genistin, in soymilks were hydrolyzed completely in the relatively short fermentation time of 18 h. These results show that Bifidobacterium sp. Int-57 can be used as a potential starter culture for developing fermented soymilk which has completely hydrolyzed isoflavone glycosides.

In vitro Inhibitory Activity on Rat Intestinal Mucosa ${\alpha}-glucosidase$ by Rice Hull Extract (왕겨추출물의 쥐소장점막 ${\alpha}-glucosidase$에 대한 in vitro에서의 저해효과)

  • Kim, Hye-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.601-608
    • /
    • 1997
  • In order to search for the way to utilize rice hull as a renewable resource, the inhibition on ${\alpha}-glucosidase$ and the fractionation of rice hull extract was investigated. An ethanol extract of rice hull from Japonica-type rice seeds exhibited 30% inhibitory activity on rat intestinal brush border ${\alpha}-glucosidase$ (1.4 mU/mL) in vitro at the concentration of 0.8 mg/mL using 6 mM p-nitrophenyl ${\alpha}-D-glucopyranoside$ as a substrate $(IC_{50}\;162\;mg/mL)$. Among the fractions obtained by partitioning the ethanol extract successively with solvents, the ethyl acetate fraction at the concentration of 0.8 mg/mL was found to exhibit the most potent inhibitory activity i.e. 65% inhibition of ${\alpha}-glucosidase\;(IC_{50}\;0.14\;mg/mL)$. Silica gel column chromatography of the ethyl acetate fraction exhibited slightly higher (90%) inhibitory activity, and its subsequent fractionation by Sephadex LH-20 column chromatography did not improve inhibitory activity. Considering the inhibitory activity and yield, the ethyl acetate fraction obtained by the solvent-partitioning process would be a candidate for the hypoglycemic food if it has in vivo effectiveness.

  • PDF

Studies on the Characterization of Cellulase Produced by Trichoderma viride QM 9414 (Trichoderma viride QM 9414가 생산하는 Cellulase 특성에 관한 연구)

  • 윤은숙;이혜정
    • The Korean Journal of Food And Nutrition
    • /
    • v.3 no.1
    • /
    • pp.57-68
    • /
    • 1990
  • In order to obtain the fundamental informations on cellulase of Trichoderma viride QM 9414 for its production and utilization, some physico-chemical properties of the enzyme were reviewed. When T. viride QM 9414 was cultured on wheat bran medium, filter paper-disintegrating and carboxymethyl cellulose-saccharifying activity were increased with the cell growth, and thereafter CMC-saccharifying activity was kept on almost the same leved while filter-paper disintegrating activity was decreased sharply. And B-glucosidase was formed maximally on the late stationary phase of growth. The crude cellulase of cell-free extracts was purified by (NH4)2SO4 fractionation, Sephadex-G 200 column chromatography and DEAE Sephadex A-50 column chromatography. Filter paper-disintegrating, CMC-saccharifying and B-glucosidase activity were purified 10-fold, 47-fold and 38-fold, respectively. The crude enzyme was proved to be a complex of three different enzyme proteins which were showing filter paper-disintegrating, CMC-saccharifying and B-glucosidase activity. The optimal pH of the three enzyme components was alike pH 4.0, and the optimal temperature for CMC-saccharifying, filter paper-disintegrating and B-glucosidase activity were 4$0^{\circ}C$, 45$^{\circ}C$ and 5$0^{\circ}C$ respectively. The Km and Vmax values of CMC saccharifying activity for CMC were 0.485% and 3.10, and the Km and Vmax vallues of B-glucosidase for PNPG were 0.944$\times$10-3M and 0.097, respectively. The Km and Vmax values of filter paper-disintegrating activity for Avicel were determined to be 0.09% and 0.178, respectively. B-Glucosidase activity was competitively inhibited by glucose, and the Ki value for this enzyme was 3.54$\times$10-3M, CMC saccharifying activity was found to be greatly inhibited by cellobiose.

  • PDF

Inhibitory Effects of Ginseng Seed Oil on α-Glucosidase and α-Amylase Activity (인삼종자오일의 α-Glucosidase 및 α-Amylase 저해작용)

  • Ahn, Chang Ho;Nam, Yun Min;Kim, Shin Jung;Yang, Byung Wook;Kim, Hyoung Chun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.24-28
    • /
    • 2016
  • This study was to evaluate the effect of ginseng (Panax ginseng) seed oil on the ${\alpha}$-glucosidase and ${\alpha}$-amylase. Each ginseng seed oils (HE, SE, EE) exhibited a significant inhibitory effect (p<0.001) at all concentrations (10 and 20 mg/ml) on ${\alpha}$-glucosidase activity. HE is the highest inhibitory activity (86.92%) at a concentration of 20 mg/ml, SE and EE showed an inhibitory effect of 77.13% and 65.83%, respectively. And also, Each ginseng seed oils (HE, SE, EE) exhibited a significant inhibitory effect (p<0.001) at all concentrations (1 and 2 mg/ml) on ${\alpha}$-amylase activity. HE is the highest inhibitory activity (89.68%) at a concentration of 2 mg/ml, SE and EE showed an inhibitory effect of 76.99% and 65.70%, respectively.

In Vitro α-Amylase, α-Glucosidase, Pancreatic Lipase, Xanthine Oxidase Inhibiting Activity of Agaricus bisporus Extracts

  • Jung Han Kim;Myoung Jun Jang;Youn Jin Park
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.60-66
    • /
    • 2023
  • In this study, the α-amylase inhibitory activity, α-glucosidase inhibitory activity, pancreatic lipase inhibitory activity, and Xanthine Oxidase inhibitory activity of the fruiting body extracts of 5 varieties of Agaricus bisporus (AB) were confirmed. First, the α-amylase inhibitory activity of AB12, AB13, AB18, AB34, and AB40 methanol extracts was lower than that of acarbose, a positive control, in all concentration ranges. The α-glucosidase inhibitory activity of the AB40, AB13, and AB12 methanol extracts at the extract concentration of 1.0 mg/mL was 80.5%, 81.3%, and 78.5%, respectively, similar to that of acarbose, a positive control. The pancreatic lipase inhibitory activity of the methanol extract of Agaricus bisporus fruiting body was significantly lower than that of the positive control orlistat in the concentration range of 50~1.000 (mg/mL). The Xanthine Oxidase inhibitory activity was 0.5~8.0 mg/mL of each extract, which was significantly lower than that of the positive control allopurinol in the same concentration range. However, the Xanthine Oxidase inhibitory activity of AB13 and AB40 at 8.0 mg/mL was about 70%, which was higher than that of other mushrooms. In conclusion, five kinds of Agaricus bisporus fruiting bodies seem to have inhibitory effects on enzymes such as α-amylase, α-glucosidase, pancreatic lipase, and Xanthine Oxidase that degrade starch and protein. In particular, it has an inhibitory effect and a reduction effect on xanthine oxidase that causes gout, so it is expected that it can be developed and used as a food or health supplement with health functional properties through future research.

Improvement of Anti-Inflammation Activity of Gardeniae fructus Extract by the Treatment of β-Glucosidase (β-Glucosidase 처리에 의한 치자추출물의 항염증 활성 증진)

  • Shon, Dong-Hwa;Choi, Dae-Woon;Kim, Mi-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.331-336
    • /
    • 2012
  • In this study, we selected Gardeniae fructus (GF) as an anti-inflammatory functional material and improved the biological activity of GF through the treatment of ${\beta}$-glucosidase. For the simple evaluation of anti-inflammatory activity, the inhibitory activity of GF extract (GFE) on the production of NO by RAW264.7 cells in the presence of LPS was examined. ${\beta}$-glucosidase originating from Aspergillus niger or Aspergillus fumigatus has effectively improved the anti-inflammatory activity of GFE. The enzyme treatment raised the activity of GFE by more than 10 times. The optimum conditions for the enzyme reaction were at pH 4.6, $45^{\circ}C$, and 20 U/mL for 24 h with agitation. In addition, in vitro production of cytokines (IL-$1{\beta}$, IL-6, TNF-${\alpha}$), COX-2, and the NF-${\kappa}B$ activation of RAW264.7 cells decreased more in the presence of GFE treated with ${\beta}$-glucosidase originating from Aspergillus niger (GFAN) than in the presence of GFE. These results suggest that enzyme-treated GFE might be a potential candidate for natural anti-inflammatory food materials.

Comparison of Antioxidant Activity and ${\alpha}$-Glucosidase Inhibiting Activity by Extracts of Galla rhois

  • Lee, Seung-Hyun;Lee, Sang-Han
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • We studied antioxidant activity and inhibitory effect of ${\alpha}$-glucosidase from aqueous, ethanolic and methanolic fractions of Galla rhois. In FRAP and ORAC assay for measuring antioxidant activity, we confirmed that Galla rhois extracts had strong antioxidant activity and ethanolic and methanolic extracts were relatively stronger than aqueous extract. We used trolox as a positive control. In order to measure the inhibitory effect of ${\alpha}$-glucosidase, we compared acarbose and Galla rhois extracts. As a result of ${\alpha}$-glucosidase inhibitory assay, aqueous, ethanolic and methanolic extracts of Galla rhois showed high inhibitory activitity and ethanolic and methanolic extracts were relatively stronger than aqueous extract. The 50% inhibitory concentrations (IC50s) of acarbose, aqueous, ethanolic and methanolic fractions were 0.45 mM, $0.53{\mu}g/ml$, $0.415{\mu}g/ml$ and $0.37{\mu}g/ml$, respectively. These results suggest that Galla rhois extracts can be a clinically useful anti-diabetic ingredient, indicating that it needs to be fractionated and isolated and should be further investigated.

Purification and Characterization of a Bacillus sp. DG0303 Thermostable $\alpha$-Glucosidase with Oligo-l,6-glucosidase Activity

  • Park, Jong-Sung;Kim, Il-Han;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.270-276
    • /
    • 1998
  • Extracellular ${\alpha}$-glucosidase was purified to homogeneity from moderately thermophilic Bacillus sp. DG0303. The thermostable ${\alpha}$-glucosidase was purified by ammonium sulfate fractionation, ion-exchange chromatography, preparative polyacrylamide gel electrophoresis (PAGE), and electroelution. The molecular weight of the enzyme was estimated to be 60 kDa by SDS-PAGE. The optimum temperature for the action of the enzyme was at $60^{\circ}C$. It had a half-life of 35 min at $60^{\circ}C$. The enzyme was stable at the pH range of 4.5~7.0 and had an optimum pH at 5.0. The enzyme preparation did not require any metal ion for activity. The thermostable ${\alpha}$-glucosidase hydrolyzed the ${\alpha}$-1,6-linkages in isomaltose, isomaltotriose, and panose, and had little or no activity with maltooligosaccharides and other polysaccharides. The $K_m$ (mM) for p-nitrophenyl-${\alpha}$-D-glucopyranoside (pNPG), panose, isomaltose, and isomaltotriose were 4.6, 4.7, 40.8, and 3.7 and the $V_{max}$(${\mu}mol{\cdot}min^-1$$mg^-1$) for those substrates were 5629, 1669, 3410, and 1827, respectively. The N-terminal amino acid sequence of the enzyme was MERVWWKKAV. Based on its substrate specificity and catalytic properties, the enzyme has been assigned to be an oligo-1,6-glucosidase.

  • PDF

Characterization of β-Glucosidase Produced by the White Rot Fungus Flammulina velutipes

  • Mallerman, Julieta;Papinutti, Leandro;Levin, Laura
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • β-Glucosidase production by the white rot fungus Flammulina velutipes CFK 3111 was evaluated using different carbon and nitrogen sources under submerged fermentation. Maximal extracellular enzyme production was 1.6 U/ml, corresponding to a culture grown in sucrose 40 g/land asparagine 10 g/l. High production yield was also obtained with glucose 10 g/land asparagine 4 g/l medium (0.5 U/ml). Parameters affecting the enzyme activity were studied using p-nitrophenyl-β-D-glucopyranoside as the substrate. Optimal activity was found at 50℃ and pHs 5.0 to 6.0. Under these conditions, β-glucosidase retained 25% of its initial activity after 12 h of incubation and exhibited a half-life of 5 h. The addition of MgCl2, urea, and ethanol enhanced the β-glucosidase activity up to 47%, whereas FeCl2, CuSO4, Cd(NO3)2, and cetyltrimethylammonium bromide inflicted a strong inhibitory effect. Glucose and cellobiose also showed an inhibitory effect on the β-glucosidase activity in a concentration-dependent manner. The enzyme had an estimated molecular mass of 75 kDa. To the best of our knowledge, F. velutipes CFK 3111 β-glucosidase production is amongst the highest reported to date, in a basidiomycetous fungus.