• Title/Summary/Keyword: a-SZTO

Search Result 12, Processing Time 0.016 seconds

Influence of Wet Annealing on the Performance of SiZnSnO Thin Film Transistors

  • Han, Sangmin;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.34-36
    • /
    • 2015
  • Amorphous SiZnSnO(SZTO) thin film transistors(TFTs) have been fabricated by RF magnetron sputtering process, and they were annealed in air and in wet ambient. The electrical performance and the structure were analyzed by I-V measurement, XPS, AFM, and XRD. The results showed improvement in device performance by wet annealing process compared to air annealing treatment, because free electron was shown to be increased due to reaction of oxygen and hydrogen generating oxygen vacancy. This is understood by the generation of free electrons. We expect the wet annealing process to be a promising candidate to contributing to high electrical performance of oxide thin film transistors for backplane device applications.

Investigation of the Contact Resistance Between Amorphous Silicon-Zinc-Tin-Oxide Thin Film Transistors and Different Electrodes Using the Transmission Line Method

  • Lee, Byeong Hyeon;Han, Sangmin;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • A thin film transistor (TFT) has been fabricated using the amorphous 0.5 wt% Si doped zinc-tin-oxide (a-0.5 SZTO) with different electrodes made of either aluminium (Al) or titanium/aluminium(Ti/Al). Contact resistance and total channel resistance of a-0.5SZTO TFTs have been investigated and compared using the transmission line method (TLM). We measured the total resistance of 1.0×102 Ω/cm using Ti/Al electrodes. This result is due to Ti, which is a material known for its adhesion layer. We found that the Ti/Al electrode showed better contact characteristics between the channel and electrodes compared with that made of Al only. The former showed a less contact and total resistance. We achieved high performance of the TFTs characteristic, such as Vth of 2.6 V, field effect mobility of 20.1 cm2 V−1s−1, S.S of 0.9 Vdecade−1, and on/off current ratio of 9.7×106 A. It was demonstrated that the Ti/Al electrodes improved performance of TFTs due to enhanced contact resistance.