• 제목/요약/키워드: a-InGaZnO

검색결과 339건 처리시간 0.022초

Luminescence Characteristics of ZnGa2O4:Mn2+,Cr3+ Phosphor and Thick Film

  • Cha, Jae-Hyeok;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.11-15
    • /
    • 2011
  • In this study, $ZnGa_2O_4$ phosphors in its application to field emission displays and electroluminescence were synthesized through the precipitation method and $Mn^{2+}$ ions. A green luminescence activator, $Cr^{3+}$ ions, and a red luminescence activator were separately doped into $ZnGa_2O_4$, which was then screen printed to an indium tin oxide substrate. The thick films of the $ZnGa_2O_4$ were deposited with the various thicknesses using nano-sized powder. The best luminescence characteristics were shown at a thickness of 60 ${\mu}m$. Additionally, green-emission $ZnGa_2O_4:Mn^{2+}$ and red-emission $ZnGa_2O_4:Cr^{3+}$ phosphor thick films, which have superior characteristics, were manufactured through the screen-printing method. These results indicate that $ZnGa_2O_4$ phosphors prepared through the precipitation method have wide application as phosphor of the full color emission.

Preparation and EPR Characteristics of $ZnGa_2O_4$ : Mn Phosphor

  • 정하균;박도순;박윤창
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권12호
    • /
    • pp.1320-1325
    • /
    • 1998
  • ZnGa2O4: Mn phosphors were prepared by a new chemical process, and their photoluminescence and electron paramagnetic resonance characteristics were investigated. The chemical method showed a low temperature formation of phosphors and a rod-type shape of particles. The strong ultraviolet emission was observed in the undoped ZnGa2O4 phosphor, while strong green emission in the Mn2+-activated ZnGa2O4 phosphor. The green emission intensity of the phosphor prepared by the chemical method was much stronger than that prepared by the conventional method. This difference with preparation methods was interpreted as due to the difference in the distribution of Mn2+ in the host lattice. From EPR results, it was explained that the line intensity of the undoped ZnGa2O4 is associated with the electrical conductivity of this material and the concentration quenching of green luminescence of ZnGa2O4: Mn at higher Mn2+ concentration is attributed to the coupling by exchange interaction between Mn2+ ions.

박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스와 구조적 특성에 관한 연구 (A Study on the Cathodoluminescence and Structure of Thin Film $ZnGa_2O_4:Mn$ Oxide Phosphor)

  • 김주한
    • 한국진공학회지
    • /
    • 제15권5호
    • /
    • pp.541-546
    • /
    • 2006
  • 본 연구에서는 박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스 특성과 구조적 성질에 대하여 field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), 그리고 cathodoluminescence (CL) 방법을 이용하여 조사하였다. $ZnGa_2O_4:Mn$ 형광체 타겟으로부터 $Mn^{2+}$ 이온의 $^4T_1{\rightarrow}^6A_1$ 전이에 의한 506nm 파장에서의 PL emission 스펙트럼이 관찰되었다. 색좌표는 x = 0.09, y = 0.67 이었다. $ZnGa_2O_4:Mn$ 박막의 여기 스펙트럼은 $Mn^{2+}$ 이온 흡수에 의한 294 nm의 피크 파장을 나타내었다. 낮은 압력에서 증착한 $ZnGa_2O_4:Mn$ 형광체 박막은 고밀도의 치밀한 단면구조를 보였고, 높은 세기의 음극선루미느센스가 505 nm 피크 파장에서 나타났다. 표면 거칠기가 음극선루미느센스의 세기에 미치는 영향은 관찰되지 않았다.

수직 배향된 Ga-doped ZnO nanorods의 합성과 전기적 특성 (Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior)

  • 안철현;한원석;공보현;김영이;조형균;김준제;김홍승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.414-414
    • /
    • 2008
  • Vertically well-aligned Ga-doped ZnO nanorods with different Ga contents were grown by thermal evaporation on a ZnO template. The Ga-doped ZnO nanorods synthesized with 50 wt % Ga with respect to the Zn content showed maximum compressive stress relative to the ZnO template, which led to a rapid growth rate along the c-axis due to the rapid release of stored strain energy. A further increase in the Ga content improved the conductivity of the nanorods due to the substitutional incorporation of Ga atoms in the Zn sites based on a decrease in lattice spacing. The p-n diode structure with Ga-doped ZnO nanorods, as a n-type, displayed a distinct white light luminescence from the side-view of the device, showing weak ultraviolet and various deep-level emissions.

  • PDF

RF스퍼터링법으로 성장시킨 n-ZnO 박막과 n-ZnO/p-GaN 이종접합 LED의 특성 (Properties of the RF Sputter Deposited n-ZnO Thin-Film and the n-ZnO/p-GaN heterojunction LED)

  • 신동휘;변창섭;김선태
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.161-167
    • /
    • 2013
  • The ZnO thin films were grown on GaN template substrates by RF magnetron sputtering at different RF powers and n-ZnO/p-GaN heterojunction LEDs were fabricated to investigate the effect of the RF power on the characteristics of the n-ZnO/p-GaN LEDs. For the growth of the ZnO thin films, the substrate temperature was kept constant at $200^{\circ}C$ and the RF power was varied within the range of 200 to 500W at different growth times to deposit films of 100 nm thick. The electrical, optical and structural properties of ZnO thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and by assessing the Hall effect. The characteristics of the n-ZnO/p-GaN LEDs were evaluated by current-voltage (I-V) and electroluminescence (EL) measurements. ZnO thin films were grown with a preferred c-axis orientation along the (0002) plane. The XRD peaks shifted to low angles and the surface roughness became non-uniform with an increase in the RF power. Also, the PL emission peak was red-shifted. The carrier density and the mobility decreased with the RF power. For the n-ZnO/p-GaN LED, the forward current at 20 V decreased and the threshold voltage increased with the RF power. The EL emission peak was observed at approximately 435 nm and the luminescence intensity decreased. Consequently, the crystallinity of the ZnO thin films grown with RF sputtering powers were improved. However, excess Zn affected the structural, electrical and optical properties of the ZnO thin films when the optimal RF power was exceeded. This excess RF power will degrade the characteristics of light emitting devices.

Transparent Phosphorus Doped ZnO Ohmic Contact to GaN Based LED

  • Lim, Jae-Hong;Park, Seong-Ju
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.417-420
    • /
    • 2009
  • This study develops a highly transparent ohmic contact using phosphorus doped ZnO with current spreading for p-GaN to increase the optical output power of nitride-based light-emitting diodes (LEDs). The phosphorus doped ZnO transparent ohmic contact layer was prepared by radio frequency magnetron sputtering with post-deposition annealing. The transmittance of the phosphorus doped ZnO exceeds 90% in the region of 440 nm to 500 nm. The specific contact resistance of the phosphorus doped ZnO on p-GaN was determined to be $7.82{\times}10^{-3}{\Omega}{\cdot}cm^2$ after annealing at $700^{\circ}C$. GaN LED chips with dimensions of $300\times300{\mu}m$ fabricated with the phosphorus doped ZnO transparent ohmic contact were developed and produced a 2.7 V increase in forward voltage under a nominal forward current of 20 mA compared to GaN LED with Ni/Au Ohmic contact. However, the output power increased by 25% at the injection current of 20 mA compared to GaN LED with the Ni/Au contact scheme.

RF 마그네트론 스퍼터링 방법으로 상온에서 유리기판 위에 성장시킨 ZnO의 성질에 미치는 Ga 도핑 효과 (Effect of Ga-doping on the properties of ZnO films grown on glass substrate at room temperature by radio frequency magnetron sputtering)

  • 김금채;이지수;이수경;김도현;이성희;문주호;전민현
    • 한국진공학회지
    • /
    • 제17권1호
    • /
    • pp.40-45
    • /
    • 2008
  • 유리기판 위에 약 500 nm 의 두께로 성장된 ZnO층의 구조적, 광학적, 전기적 성질에 미치는 갈륨도핑의 영향에 대하여 연구 하였다. 다결정 ZnO 와 GZO 층은 상온에서 radio frequency magnetron sputtering 법을 사용하여 성장되었다. 투과전자현미경 (TEM)과 x-ray 회절분석 (XRD)에 의하면, 갈륨이 도핑된 ZnO 박막의 결정성은 ZnO에 비하여 향상되었고 (002)방향을 따라 우선성장 되었음이 발견되었다. GZO 박막의 투과도는 가시광 영역에서 ZnO 박막에 비해 약 10% 정도 향상된 것으로 나타났다. PL 분석에 따르면, NBE emission 세기와 DL emission 세기의 비는 GZO 와 ZnO의 경우 각각 2.65:1 과 1.27:1로 나타났다. GZO와 ZnO의 비저항은 각각 1.27과 1.61 $\Omega{\cdot}cm$로서 GZO의 전기전도도가 높았다. GZO 와 ZnO의 캐리어농도는 각각 $10^{18}$ and $10^{20}cm^2$/Vs으로 측정되었다. 본 실험결과 따르면, Ga 도핑으로 인해 ZnO 박막의 전기적, 광학적, 구조적 특성이 향상되었음을 알 수 있었다.

(Ga,Al)이 도핑된 ZnO를 투명전극으로 가진 Cu(In,Ga)Se2 태양전지에 수분이 미치는 영향 (Effect of Moisture on Cu(In,Ga)Se2 Solar Cell with (Ga,Al) Co-doped ZnO as Window Layer)

  • 양소현;배진아;송유진;전찬욱
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.135-139
    • /
    • 2017
  • We fabricated two different transparent conducting oxide thin films of ZnO doped with Ga ($Ga_2O_3$ 0.9 wt%) as well as Al ($Al_2O_3$ 2.1 wt%) (GAZO) and ZnO doped only with Al ($Al_2O_3$ 3 wt%) (AZO). It was investigated how it affects the moisture resistance of the transparent electrode. In addition, $Cu(In,Ga)Se_2$ thin film solar cells with two transparent oxides as front electrodes were fabricated, and the correlation between humidity resistance of transparent electrodes and device performance of solar cells was examined. When both transparent electrodes were exposed to high temperature distilled water, they showed a rapid increase in sheet resistance and a decrease in the fill factor of the solar cell. However, AZO showed a drastic decrease in efficiency at the beginning of exposure, while GAZO showed that the deterioration of efficiency occurred over a long period of time and that the long term moisture resistance of GAZO was better.

Characterization of Highly Conducting ZnMgBeGaO/Ag/ZnMgBeGaO Transparent Conductive Multilayer Films with UV Energy Bandgap

  • Le, Ngoc Minh;Hoang, Ba Cuong;Lee, Byung-Teak
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.695-698
    • /
    • 2017
  • ZnMgBeGaO/Ag/ZnMgBeGaO multilayer structures were sputter grown and characterized in detail. Results indicated that the electrical properties of the ZnMgBeGaO films were significantly improved by inserting an Ag layer with proper thickness (~ 10 nm). Structures with thicker Ag films showed much lower optical transmission, although the electrical conductivity was further improved. It was also observed that the electrical properties of the multilayer structure were sizably improved by annealing in vacuum (~35 % at $300^{\circ}C$). The optimum ZnMgBeGaO(20nm)/Ag(10nm)/ZnMgBeGaO(20nm) structure exhibited an electrical resistivity of ${\sim}2.6{\times}10^{-5}{\Omega}cm$ (after annealing), energy bandgap of ~3.75 eV, and optical transmittance of 65 % ~ 95 % over the visible wavelength range, representing a significant improvement in characteristics versus previously reported transparent conductive materials.

Mn 첨가에 따른 $ZnGa_2O_4$ 형광체의 발광특성 (Cathode Luminescence Characteristics of $ZnGa_2O_4$ Phosphors with the doped molar ratio of Mn)

  • 홍범주;이승규;권상직;김경환;박용서;최형욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.463-465
    • /
    • 2005
  • The $ZnGa_2O_4$:Mn phosphor was synthesized through solid-state reactions at the various molar ratio of Mn from 0.002 % to 0.01 %. Structural and optical properties of the $ZnGa_2O_4$:Mn phosphor was investigated by using X-ray diffraction (XRD), and cathodoluminescence (CL) measurements. The XRD patterns show that the Mn-doped $ZnGa_2O_4$ has a (311) main peak and a spinel phase. Also the emission wavelength shifts from 420 to 510 nm in comparison with $ZnGa_2O_4$ when Mn is doped in $ZnGa_2O_4$. These results indicate that $ZnGa_2O_4$:Mn phosphors hold promise for potential applications in field-emission display devices with high brightness operating in green spectral regions.

  • PDF