• 제목/요약/키워드: a well-type reactive barrier

검색결과 3건 처리시간 0.01초

독립영양 황탈질 미생물을 이용한 관정형 반응벽체의 현장적용성 연구 (Pilot-scale Applications of a Well-type Reactive Barrier using Autotrophic Sulfur-oxidizers for Nitrate Removal)

  • 이병선;엄재연;이규연;문희선;김양빈;우남칠;이종민;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제14권3호
    • /
    • pp.40-46
    • /
    • 2009
  • 독립영양 황탈질 미생물 Thiobacillus denitrificans를 이용한 질산염 오염지하수 정화 기술을 개발하고자, 3열의 관정형 반응벽체(길이 $\times$ 너비 $\times$ 깊이 = $3m\;{\times}\;4\;m\;{\times}\;2\;m$)를 한국농어촌공사 수리시험장(길이 $\times$ 너비 $\times$ 깊이 = $8m\;{\times}\;4\;m\;{\times}\;2\;m$)에 설치하고 현장적용성을 검토하였다. 전자공여체로 총 80 kg의 황입자를, 탈질미생물로 Thiobacillus denitrificans를 준비하였다. 황입자 표면에 Thiobacillus denitrificans를 부착하는 1톤 용량 물통 실험에서, Thiobacillus denitrificans는 질산염 농도 375 mg/L(6.1 mM)의 오염수를 11일 경과 후 ~12% (0.7 mM), 18일 경과 후 ~24%(1.3 mM), 32일 경과 후 ~45%(2.4 mM), 그리고 부착 종료 시(60일)까지 ~52%(2.8 mM)를 제거하며 황입자 표면에 성공적으로 부착 증식하였다. 이후, Thiobacillus denitrificans가 부착된 황입자를 3열의 관정형 반응벽체(각 열 간격 1 m)에 주입하여 황탈질 미생물 관정형 반응벽체를 설치하였다. 초기 질산염 농도 평균 181 mg/L 인 인공오염지하수에 대하여 28일 간 1차 정화실험을 실시하였고, 평균 281 mg/L 인 인공오염지하수에 대하여 14일 간 2차 정화실험을 실시하였다. 1차 실험의 인공오염지하수(2.9 mM)는 1열 반응 후 ~2%(0.06 mM), 2열 반응 후 ~9%(0.27 mM), 3열 반응 후 ~15%(0.44 mM)의 질산염이 제거되었다. 2차 실험의 인공오염지하수(4.5 mM)는 1열 반응 후 ~1%(0.02 mM), 2열 반응 후 ~6%(0.27 mM), 3열 반응 후 ~8%(0.37 mM)가 제거되었다. 실험 기간 중 인공오염지하수의 주입용량은 $1.24\;m^3/d$, 유속은 0.44 m/d를 유지하였고, pH는 6.7~8.3, DO는 0.9~2.8 mg/L 범위로 큰 변화가 없었다. 본 관정형 반응벽체 실험의 낮은 정화효율의 원인은 인공오염지하수에 대한 Thiobacillus denitrificans의 탈질 소요 시간 부족, 관정형 반응벽체의 개별 관정사이로 빠져나가는 인공오염지하수체, 그리고 질산염 환원효소의 활성 및 생성을 억제시키는 용존산소의 상대적으로 높은 농도 때문으로 추정된다. 황탈질 관정형 반응벽체의 현장적용시에는 탈질반응에 필요한 체류시간, 관정형 반응벽체의 개수 및 간격, 그리고 용존산소 농도 등 해당 오염부지의 고유 특성을 고려한 설계가 필요하다.

High Work Function of AZO Fhin Films as Insertion Layer between TCO and p-layer and Its Application of Solar Cells

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.426.1-426.1
    • /
    • 2016
  • We report high work function Aluminum doped zinc oxide (AZO) films as insertion layer as a function of O2 flow rate between transparent conducting oxides (TCO) and hydrogenated amorphous silicon oxide (a-SiOx:H) layer to improve open circuit voltage (Voc) and fill factor (FF) for high efficiency thin film solar cell. However, amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier like impedance at the interface between a-SiOx:H windows and TCO. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiOx:H. In this study, we report on the silicon thin film solar cell by using as insertion layer of O2 reactive AZO films between TCO and p-type a-SiOx:H. Significant efficiency enhancement was demonstrated by using high work-function layers (4.95 eV at O2=2 sccm) for engineering the work function at the key interfaces to raise FF as well as Voc. Therefore, we can be obtained the conversion efficiency of 7 % at 13mA/cm2 of the current density (Jsc) and 63.35 % of FF.

  • PDF

Relative Reactivity of Various Al-substituted-dialkylalans in Reduction of Carbonyl Compounds: A Theoretical Study on Substituent Effect

  • Nahm, Keepyung;Cha, Jin Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2335-2339
    • /
    • 2013
  • Relative reactivity of various Al-substituted dialkylalans ($AlR_2(X)$) in reduction of acetone has been studied with density functional theory and MP2 method. Formation of the alan dimers and the alan-acetone adduct, and the transition state for the Meerwein-Ponndorf-Verley (MPV) type reduction of the adduct were calculated to figure out the energy profile. Formation of dimeric alans is highly exothermic. Both the relative free energies for acetone-alan adduct formation and the TS barriers for the MPV type reduction with respect to alan dimers and acetone were calculated and they show the same trend. Based on these energetic data, relative reactivity of alans is expected to be; $AlR_2(Cl)$ > $AlR_2(OTf)$ > $AlR_2(O_2CCF_3)$ > $AlR_2(F)$ > $AlR_2(OMs)$ > $AlR_2(OAc)$ > $AlR_2(OMe)$ > $AlR_2(NMe_2)$. The energy profile is relatively well correlated with the experimental order of the reactivity of Al-substituted dialkylalans. It is noted that the substituents of alans have initial effects on the relative free energies for the carbonyl-adduct formation. Therefore, an $AlR_2(X)$ which forms a more stable carbonyl-adduct is more reactive in carbonyl reduction.