• 제목/요약/키워드: a unknown object

검색결과 176건 처리시간 0.022초

손가락 힘센서를 가진 지능형 로봇손 개발 (Development of Intelligent robot' hand with Three Finger Force Sensors)

  • 김갑순;신희준;김현민
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.89-96
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three finger sensors for a humanoid robot. In order to grasp an unknown object safely, the intelligent robot's hand should measure the mass of the object, and determine the grasping force using the mass, finally control the grasping force using the finger sensors and the controller. In this paper, the intelligent robot's hand for a humanoid robot was developed. First, the six-axis force/moment sensor was manufactured. second, three finger force sensors were designed and fabricated, third, the high-speed controller was manufactured using DSP(digital signal processor), finally, the characteristic test for determining a grasping force and for grasping an unknown object safely It is confirmed that the hand could grasp an unknown object safely.

A computed-error-input based learning scheme for multi-robot systems

  • Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.518-521
    • /
    • 1995
  • In this paper, a learning control problem is formulated for cooperating multiple-robot manipulators with uncertain system parameters. The commonly held object is also assumed to be unknown and the multiple-robots themselfs experience uncertain operating conditions such as link parameters, viscous friction parameters, suctions, actuator bias, and etc. Under these conditions, the learning controllers designed for learning of uncertain parameters and robot control inputs for multiple-robot systems are shown to drive the multiple-robot manipulators to follow the desired Cartesian trajectory with the desired internal forces to the unknown object.

  • PDF

디지털 영상 객체의 불투명도 추정을 위한 SOM Matting (SOM Matting for Alpha Estimation of Object in a Digital Image)

  • 박현준;차의영
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.1981-1986
    • /
    • 2009
  • 본 논문은 인공신경망을 이용한 새로운 매팅 기법을 제안한다. 매팅이란 영상에서 객체의 불투명도를 추정하는 기술이다. 매팅 기법을 이용하면 객체를 자연스럽게 추출할 수 있다. 먼저 trimap을 이용하여 영상을 배경 영역, 전경 영역, 미지 영역으로 구분한다. 배경 영역과 전경 영역의 정보를 이용하여 미지 영역 화소의 불투명도를 추정한다. 제안하는 알고리즘은 배경 영역과 전경 영역의 정보를 SOM을 이용하여 학습하고 그 결과를 이용하여 미지 영역의 각 화소의 불투명도를 추정한다. 본 논문에서는 배경 영역과 전경 영역의 정보를 학습하는 방법에 따라서 전역적 SOM matting과 지역적 SOM matting으로 구별한다. 제안하는 알고리즘의 성능을 평가하기 위하여 영상에 적용해보았다. 이를 통해 제안하는 알고리즘이 객체를 영상에서 분리 가능함을 확인 할 수 있다.

움직이는 물체의 안정한 Grasping을 위한 시각추적 시스템 개발 (The development of a visual tracking system for the stable grasping of a moving object)

  • 차인혁;손영갑;한창수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.543-546
    • /
    • 1996
  • We propose a new visual tracking system for grasping which can find grasping points of an unknown polygonal object. We construct the system with the image prediction technique and Extended Kalman Filter algorithm. The Extended Kalman Filter(EKF) based on the SVD can improve the accuracy and processing time for the estimation of the nonlinear state variables. By using it, we can solve the numerical unstability problem that can occur in the visual tracking system based on Kalman filter. The image prediction algorithm can reduce the effect of noise and the image processing time. In the processing of a visual tracking, we can construct the parameterized family and can found the grasping points of unknown object through the geometric properties of the parameterized family.

  • PDF

컴퓨터 비젼 방법을 이용한 3차원 물체 위치 결정에 관한 연구 (A Study on the Determination of 3-D Object's Position Based on Computer Vision Method)

  • 김경석
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.26-34
    • /
    • 1999
  • This study shows an alternative method for the determination of object's position, based on a computer vision method. This approach develops the vision system model to define the reciprocal relationship between the 3-D real space and 2-D image plane. The developed model involves the bilinear six-view parameters, which is estimated using the relationship between the camera space location and real coordinates of known position. Based on estimated parameters in independent cameras, the position of unknown object is accomplished using a sequential estimation scheme that permits data of unknown points in each of the 2-D image plane of cameras. This vision control methods the robust and reliable, which overcomes the difficulties of the conventional research such as precise calibration of the vision sensor, exact kinematic modeling of the robot, and correct knowledge of the relative positions and orientation of the robot and CCD camera. Finally, the developed vision control method is tested experimentally by performing determination of object position in the space using computer vision system. These results show the presented method is precise and compatible.

  • PDF

적응형 깊이 추정기를 이용한 미지 물체의 자세 예측 (Predicting Unseen Object Pose with an Adaptive Depth Estimator)

  • 송성호;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권12호
    • /
    • pp.509-516
    • /
    • 2022
  • 3차원 공간에서 물체들의 정확한 자세 예측은 실내외 환경에서 장면 이해, 로봇의 물체 조작, 자율 주행, 증강 현실 등과 같은 많은 응용 분야들에서 폭넓게 활용되는 중요한 시각 인식 기술이다. 물체들의 자세 예측을 위한 과거 연구들은 대부분 각 인식 대상 물체마다 정확한 3차원 CAD 모델을 요구한다는 한계점이 있었다. 이러한 과거 연구들과는 달리, 본 논문에서는 3차원 CAD 모델이 없어도 RGB 컬러 영상들만 이용해서 미지 물체들의 자세를 예측해낼 수 있는 새로운 신경망 모델을 제안한다. 제안 모델은 적응형 깊이 추정기인 AdaBins를 이용하여 스스로 미지 물체 자세 예측에 필요한 각 물체의 깊이 지도를 효과적으로 추정해낼 수 있다. 벤치마크 데이터 집합들을 이용한 다양한 실험들을 통해, 본 논문에서 제안한 모델의 유용성과 성능을 평가한다.

퍼지로직을 이용한 위치 예측과 매니퓰레이터의 제어 (Fuzzy logic for a position prediction and manipulator control)

  • 이승환;임종태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.152-155
    • /
    • 1991
  • A solution to the problem of robot manipulator tracking of a smoothly moving object is given. It is shown that fuzzy prediction rule, fuzzy control can compensate the adverse effects of noise, time delay, unknown object trajectory, and robot modeling uncertainty. Simulations show that the fuzzy logic control results in acceptable precision,

  • PDF

가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링 (Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay)

  • 이경노;정성엽
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF

임의 물체에 대한 최적 3차원 Grasp Planning (Optimal 3D Grasp Planning for unknown objects)

  • 이현기;최상균;이상릉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.462-465
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has analyzed mainly with either unknown objects 2D by vision sensor or unknown objects, cylindrical or hexahedral objects, 3D. Extending the previous work, in this paper we propose an algorithm to analyze grasp of unknown objects 3D by vision sensor. This is archived by two steps. The first step is to make a 3D geometrical model of unknown objects by stereo matching which is a kind of 3D computer vision technique. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand because it has the characteristic of multi-finger hand and is easy to modeling. To find the optimal grasping points, genetic algorithm is used and objective function minimizing admissible farce of finger tip applied to the object is formulated. The algorithm is verified by computer simulation by which an optimal grasping points of known objects with different angles are checked.

  • PDF

Recognizing a polyhedron by network constraint analysis

  • Ishikawa, Seiji;Kubota, Mayumi;Nishimura, Hiroshi;Kato, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1591-1596
    • /
    • 1991
  • The present paper describes a method of recognizing a polyhedron employing the notion of network constraint analysis. Typical difficulties in three-dimensional object recognition, other than shading, reflection, and hidden line problems, include the case where appearances of an object vary according to observation points and the case where an object to be recognized is occluded by other objects placed in its front, resulting in incomplete information on the object shape. These difficulties can, however, be solved to a large extent, by taking account of certain local constraints defined on a polyhedral shape. The present paper assumes a model-based vision employing an appearance-oriented model of a polyhedron which is provided by placing it at the origin of a large sphere and observing it from various positions on the surface of the sphere. The model is actually represented by the sets of adjacent faces pairs of the polyhedron observed from those positions. Since the shape of a projected face gives constraint to that of its adjacent face, this results in a local constraint relation between these faces. Each projected face of an unknown polyhedron on an acquired image is examined its match with those faces in the model, producing network constraint relations between faces in the image and faces in the model. Taking adjacency of faces into consideration, these network constraint relations are analyzed. And if the analysis finally provides a solution telling existence of one to one match of the faces between the unknown polyhedron and the model, the unknown polyhedron is understood to be one of those memorized models placed in a certain posture. In the performed experiment, a polyhedron was observed from 320 regularly arranged points on a sphere to provide its appearance model and a polyhedron with arbitrarily postured, occluded, or imposed another difficulty was successfully recognized.

  • PDF