• Title/Summary/Keyword: a two-layer structure

Search Result 1,138, Processing Time 0.029 seconds

Ultrastructural Studies on the Cabbage Butterfly, Pieris rapae L. I . Fine Structure on the Dorsal Vessel (배추흰나비 (Pieris rapae L.)의 미세구조(微細構造)에 관한 연구(硏究) I . 배관(背管)의 미세구조(微細構造))

  • Kim, C.W.;Kim, W.K.;Lee, K.O.
    • Applied Microscopy
    • /
    • v.15 no.1
    • /
    • pp.71-85
    • /
    • 1985
  • The ultrastructure on the dorsal vessel of 5-day-old cabbage butterfly, Pieris rapae L., was carried out using the transmission and scanning electron microscope. The results are as follows. 1) The aorta. The aorta is simple tubular type and consists of the inner and outer membrane of the myocardium and thick myocardium is located between them. However the inner membrane with $0.26{\mu}m$ thickness and outer membrane with $0.08{\mu}m$ are composed of fibrous materials, the former is composed of low and high densed fibrous materials and the latter appears homogeneous layer. The myocardium consists of typical striated muscles. The sarcomere with $1.6{\mu}m$ length and in cross section, each thick filaments are surrounded by $7{\sim}8$ thin filaments. The intercalated disc is joining the end of the two muscle cells, desmosomes and septate junctions are appeared between the neighboring muscle cells. 2) The heart. The heart composing of myocardium enclosed by its inner and outer membrane as the aorta has a series of well formed segmental chamber. The arrangement of myofilaments, cell adhensions and membrane elements are observed as same as at the aorta. The inner membrane of the heart is deeply invaginated into the myocardium than the outer membrane and a lot of well developed mitochondria with rod shape are aggregated in the folds. The longitudinally and transversely oriented tubule system formed by invagnation of the sarcolemma into the muscle bundle is built up dyad with the sarcoplasmic reticulum as the aorta. The slit is formed by deeply invagination of the inner membrane of myocadium toward the muscle layer and then the inner and outer membrane of myocardium are fused. Therefore, the ostium is formed between the myocardium and situated at the lateral side of the myocardium.

  • PDF

Numerical Study on the Vortex Evolution from a Sharp-Edged, Wall-Mounted Obstacle (장애물 주위의 와구조 형성과정에 관한 수치적 연구)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.672-681
    • /
    • 2004
  • Direct numerical simulation was carried out to study the vortical structures of the flow around a wall-mounted cube in a channel at Re=1,000 and Re=3,500 based on cubic height and bulk mean velocity. The cubic obstacle is situated in the entrance region of the channel flow where the boundary layers are developing. Upstream of the obstacle, steady and unsteady laminar horseshoe vortex systems are observed at Re=1,000 and Re=3,500, respectively; the near-wake flow is turbulent in both cases. The flow separates at each leading sharp edge of the cube, and subsequent vortex roll-up is noticed in the corresponding free-shear layer. The vortex shedding from the upper leading edge (upper vortices) and that from the two lateral leading edges (lateral vortices) are both quasi-periodic and their frequencies are computed. The upper and lateral vortices further develop into hairpin and Λ vortices, respectively. A series of instantaneous contours of the second invariant of velocity gradient tensor helps us identify spatial and temporal behaviors of the vortices in detail. The results indicate that the length and time scales of the vortical structures at Re=3,500 are much shorter than those at Re:1,000. Correlations between the upper and lateral vortices are also reported.

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1172-1177
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the change of soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth region). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

Preparation of Ceramic Foam Filter and Air Permeability (집진용 세라믹 필터의 제조 및 공기 투과 특성)

  • 박재구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2000
  • Ceramic foam prepared with cordierite as a starting material by foam method was tested to evaluate the feasibility as a filter for the dust collection in hot gas. Two different types of agents Benzethonium chloride (BZTC, C27H42NO2Cl) and Sodium Lauryl Sulfate(SLS, CH3(CH2)11OSO3Na) were used as foaming agents in foaming process. Porosityof ceramic foam was about 80% and mean pore size were 100${\mu}{\textrm}{m}$ for SLS agent and 200 ${\mu}{\textrm}{m}$ for BZTC. It was observed that ceramic foam was composed of continuous macro-pore structure with opening windows interconnecting macro-pores. The surface of ceramic foam support of was coated with cordierite particles ranged from 20${\mu}{\textrm}{m}$ to 50${\mu}{\textrm}{m}$ Meso-pore size in the coating layer on ceramic foam was below 10${\mu}{\textrm}{m}$. While air permeability of the support increased with increasing macro-pore size coated ceramic filters showed a constant permeability without regard to the macro-pore size of the support. The permeabuilities of support varied in the range of 600$\times$10-13m2 to 1000$\times$10-13m2. For the case of coated ceramic filter it was about 200$\times$10-13m2. As a result of particle trapping test by using fly ash the particle removal efficiency was over the 99.9%.

  • PDF

A Single-Flux-Quantum Shift Register based on High-T$_c$ Superconducting Step-edge Josephson Junctions

  • Sung, G.Y.;Choi, C.H.;Suh, J.D.;Han, S.K.;Kang, K.Y.;Hwang, J.S.;Yoon, S.G.;Jung, K.R.;Lee, Y.H.;Kang, J.H.;Kim, Y.H.;Hahn, T.S.
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.133-133
    • /
    • 1999
  • We have fabricated and tested a simple circuit of the rapid single-flux-quantum(RSFQ) four-stage shift register using a single layer high-T$_c$ superconducting (HTS) YBa$_2Cu_3O_{7-x}$ (YBCO) thin film structure with 9 step-edge Josephson junctions. The circuit includes two read superconducting quantum interference devices(SQUID) and four stages. To establish a robust HTS RSFQ device fabrication process, we have focussed the reproducible process of sharp and straight step-edge formation as well as the ratio of film thickness to step height t/h. The spread of step-edge junction parameters was measured from each13 junctions with t/h=l/3, l/2, and 2/3 at various temperatures. We have demonstrated the simplified operation of the shift register at 65 K..

  • PDF

A Single-Flux-Quantum Shift Register based on High-$T_c$ Superconducting Step-edge Josephson Junctions

  • Sung G.Y.;Choi, C.H.;Suh J.D.;Han, S. K.;Kang, K.Y.;Hwang, J.S.;Yoon, S.G.;Jung, K.R.;Lee, Y.H.;Kang, J.H.;Kim, Y.H.;Hahn, T.S.
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • We have fabricated and tested a simple circuit of the rapid single-flux-quantum(RSFQ) four-stage shift register using a single layer high-$T_c$ superconducting (HTS) $YBa_2Cu_3O_{7-x}$ (YBCO) thin film structure with 9 step-edge Josephson junctions. The circuit includes two read superconducting quantum interference devices(SQUID) and four stages. To establish a robust HTS RSFQ device fabrication process, we have focussed on the reproducible process of sharp and straight step-edge formation as well as the ratio of film thickness to step height, t/h. The spread of step-edge junction parameters was measured from each 13 junctions with t/h=1/3, 1/2, and 2/3 at various temperatures. We have demonstrated the simplified operation of the shift register at 65 K.

  • PDF

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling, were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories, C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth process). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process (양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발)

  • Shin, H.;Park, Y.;Seo, Y.;Kim, B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

A Novel discharging MEMS device & glow discharge properties (미소간극을 갖는 MEMS 방전 소자 제작 및 특성 연구)

  • Kim, Joo-Hwan;Moon, Hyoung-Sik;Kim, Young-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.46-48
    • /
    • 2004
  • A micro-scale discharge device has been fabricated using MEMS technology and failure mechanisms during DC discharge are investigated for the microstructure. The failure of sustaining the plasma is mainly caused by either open or short of the micro-electrodes, both resulting from the sputtered metal atoms during the DC discharge. The glow discharge lifetime of the microstructures is found to depend on bias circuit scheme as well as the electrode structure. Based on the understanding of the failure mechanism, a novel microstructure is suggested to improve discharge lifetime and the longer lifetime is experimentally demonstrated. In addition to the failure mechanism, an electric breakdown between two electrodes with microns gap are studied using micromachined metal structures. The electrode gap is able to be accurately controlled by thickness of a sacrificial layer and the electric breakdown was measured while varying the gap from $2{\mu}m$ to $20{\mu}m$. The electric breakdown behavior was found to highly depend on the electrode material, which was not considered in Paschen's law.

  • PDF

Machine Layout Decision Algorithm for Cell Formation Problem Using Self-Organizing Map (자기조직화 신경망을 이용한 셀 형성 문제의 기계 배치순서 결정 알고리듬)

  • Jeon, Yong-Deok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.94-103
    • /
    • 2019
  • Self Organizing Map (SOM) is a neural network that is effective in classifying patterns that form the feature map by extracting characteristics of the input data. In this study, we propose an algorithm to determine the cell formation and the machine layout within the cell for the cell formation problem with operation sequence using the SOM. In the proposed algorithm, the output layer of the SOM is a one-dimensional structure, and the SOM is applied to the parts and the machine in two steps. The initial cell is formed when the formed clusters is grouped largely by the utilization of the machine within the cell. At this stage, machine cell are formed. The next step is to create a flow matrix of the all machine that calculates the frequency of consecutive forward movement for the machine. The machine layout order in each machine cell is determined based on this flow matrix so that the machine operation sequence is most reflected. The final step is to optimize the overall machine and parts to increase machine layout efficiency. As a result, the final cell is formed and the machine layout within the cell is determined. The proposed algorithm was tested on well-known cell formation problems with operation sequence shown in previous papers. The proposed algorithm has better performance than the other algorithms.