• Title/Summary/Keyword: a two-layer structure

Search Result 1,138, Processing Time 0.027 seconds

The Advantages of 4-fiber Bidirectional Path Switched WDM Ring and Its Implementation (양방향 Path Switched WDM Ring의 장점 및 이의 구현에 관한 연구)

  • 박영일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.813-817
    • /
    • 2000
  • A bidirectional 4-fiber path switched WDM ring is proposed, which provides 1:1 system protection for a digital client layer such as SONET system. It can provide better optical SNR than usual bidirectional line switched ring. Two implementation schemes are proposed and especially, a distributed control scheme is found to be feasible in simple structure with good performance even without supervisory channel.

  • PDF

A DC-DC Converter Using LTCC NiZnAg (LTCC NiZnAg 이용한 DC-DC 컨버터)

  • Kim, Young-Jin;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1435-1437
    • /
    • 2005
  • An integrated inductor using the low temperature cofiring ceramics(LTCC) NiZnAg was fabricated. The inductor has a sandwitch structure, which consists of 18 turns-and-thin Ag rectangular spiral coils in 2-layers(10-turn & 8-turn in each layer). The two layers of Ag coils are among three thick Ni-Zn ferrite so the inductor has a dimension of 12.70mm$\times$12.70mm and 0.32mm thick. For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured one. Finally as an application of the LTCC integrated inductor for low power electronic circuits, a LTCC boost DC/DC converter with 1W output power and 500KHz switching frequency using the inductor fabricated was developed. For the converter the maximum efficiency of about 87% was obtained.

  • PDF

A Study on the Prediction Method of Belt Edge Separation due to the Belt Width Variation of a Tire (타이어의 Belt Width 변화에 따른 Belt Edge Separation 예측 방법에 관한 연구)

  • Kim Seong-Rae;Sung Ki-Deug;Kim Son-Joo;Cho Choon-Tack
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.137-144
    • /
    • 2006
  • This study is concerned with the relation between steelbelt width and belt edge separation of a tire. Belt edge separation causes tire burst and threatens passenger's safety. For the reason, it is important to predict durability caused by belt edge separation in the early stage of the tire structure design. Usually, passenger car tires have two layers of steelbelts having opposite steel cord's angles, which makes a shear behaviour between each belt layer. Shear behaviour is one of reason to cause belt edge separation. In this study, to predict belt edge separation, we suggested the prediction method of belt edge separation and evaluated the effect of steelbelt width on the belt edge separation using FEM. We also studied on main parameters to affect shear behaviour at the belt edge area.

Efficient Transmission of Scalable Video Streams Using Dual-Channel Structure (듀얼 채널 구조를 이용한 Scalable 비디오(SVC)의 전송 성능 향상)

  • Yoo, Homin;Lee, Jaemyoun;Park, Juyoung;Han, Sanghwa;Kang, Kyungtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.9
    • /
    • pp.381-392
    • /
    • 2013
  • During the last decade, the multitude of advances attained in terminal computers, along with the introduction of mobile hand-held devices, and the deployment of high speed networks have led to a recent surge of interest in Quality of Service (QoS) for video applications. The main difficulty is that mobile devices experience disparate channel conditions, which results in different rates and patterns of packet loss. One way of making more efficient use of network resources in video services over wireless channels with heterogeneous characteristics to heterogeneous types of mobile device is to use a scalable video coding (SVC). An SVC divides a video stream into a base layer and a single or multiple enhancement layers. We have to ensure that the base layer of the video stream is successfully received and decoded by the subscribers, because it provides the basis for the subsequent decoding of the enhancement layer(s). At the same time, a system should be designed so that the enhancement layer(s) can be successfully decoded by as many users as possible, so that the average QoS is as high as possible. To accommodate these characteristics, we propose an efficient transmission scheme which incorporates SVC-aware dual-channel repetition to improve the perceived quality of services. We repeat the base-layer data over two channels, with different characteristics, to exploit transmission diversity. On the other hand, those channels are utilized to increase the data rate of enhancement layer data. This arrangement reduces service disruption under poor channel conditions by protecting the data that is more important to video decoding. Simulations show that our scheme safeguards the important packets and improves perceived video quality at a mobile device.

Optimization of preform mold injection molding process for hemispheric plastic structure fabrication (반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화)

  • Park, Jeong-Yeon;Ko, Young-Bae;Kim, Dong-Earn;Ha, Seok-Jae;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

Design, Simulation, and Optimization of a Meander Micro Hotplate for Gas Sensors

  • Souhir, Bedoui;Sami, Gomri;Hekmet, Charfeddine Samet;Abdennaceur, Kachouri
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.189-195
    • /
    • 2016
  • Micro Hotplate (MHP) is the key component in micro-sensors, particularly gas sensors. Indeed, in metal oxide gas sensors MOX, micro-heater is used as a hotplate in order to control the temperature of the sensing layer which should be in the requisite temperature range over the heater area, so as to detect the resistive changes as a function of varying concentration of different gases. Hence, their design is a very important aspect. In this paper, we have presented the design and simulation results of a meander micro heater based on three different materials - platinum, titanium and tungsten. The dielectric membrane size is 1.4 mm × 1.6 mm with a thickness of 1.4 μm. Above the membrane, a meander heating film was deposed with a thickness of 100 nm. In order to optimize the geometry, a comparative study by simulating two different heater thicknesses, then two inter track widths has also been presented. Power consumption and temperature distribution were determined in the micro heater´s structure over a supply voltage of 5, 6, and 7 V.

A Study on relative distance estimation for asynchronous FDD using Two-way ToA (비동기식 FDD에서 Two-way ToA를 통한 상대거리 측정에 관한 연구)

  • Song, Young-Hwan;Park, Jae-Soo;Shin, Young-Jun;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1175-1186
    • /
    • 2016
  • The relative distance estimation technique is important to Location-Based Service(: LBS) in a wireless communication environment. In this paper, we propose a scheme for measuring the relative distance by utilizing a frame structure of a physical layer in asynchronous Frequency Division Duplexing(: FDD) when the Internal and external infrastructure for position measurement cannot be used. The proposed method is suitable for continuous distance measurement. The test results showed that the proposed method has the accuracy of less than 10 meters on average.

Effects of Substrate Cleaning on the Properties of GaAs Epilayers Grown on Si(100) Substrate by Molecular Beam Epitaxy (분자선에피택시에 의해 Si (100) 기판 위에 성장한 GaAs 에피층의 특성에 대한 기판 세척효과)

  • Cho, Min-Young;Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.371-376
    • /
    • 2010
  • The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy (MBE) using the two-step method. The Si(100) substrates were cleaned with three different surface cleaning methods of vacuum heating, As-beam exposure, and Ga-beam deposition at the substrate temperature of $800^{\circ}C$ in the MBE growth chamber. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and $1{\mu}m$, respectively. The surface structure and properties were investigated by reflection high-energy electron diffraction (RHEED), AFM (Atomic force microscope), DXRD (Double crystal x-ray diffraction), PL (Photoluminescence), and PR (Photoreflectance). From RHEED, the surface structure of GaAs epitaxial layer grown on Si(100) substrate with Ga-beam deposition is ($2{\times}4$). The GaAs epitaxial layer grown on Si(100) substrate with Ga-beam deposition has a high quality.

Design and Fabrication of Aperture-Coupled Microstrip Patch Antenna for WLL Repeater Using Space Diversity (공간 다이버시티를 이용한 WLL 중계기용 적층형 평판 안테나 설계 및 제작)

  • 한봉희;노광현;박노준;강영진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.388-396
    • /
    • 2002
  • In this paper, An aperture-coupled microstrip patch antenna operating at WLL frequency range(Rx : 2.3∼2.33Ghz, Tx : 2.37 ∼2.4Ghz) for WLL repeater is designed and fabricated. FR-4 epoxy substrate with 4.7 relative permittivity is inserted between feed-line and patch plane. Aperture-coupled structure is employed for consideration of bandwidth improvement and gain\`s characteristics. Air gap is arranged at each layer for bandwidth extension and radome is used as a protector in the upper patch. In this paper, both 1 port and 2 port are designed as 1$\times$2 array antenna which uses T-junction and λ$\_$g//4 transformer. Here, 1 port is used as transmitting/receiving antenna and 2 port is used as receiving antenna. Functionally independent two antennas using space diversity arrange slots between two antennas in order to be placed at the same place. As a result, we obtained a excellent isolation below -40dB and return loss is reduced by means of slots arrangement between patch and antenna.

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties (Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.542-546
    • /
    • 2019
  • We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.