• 제목/요약/키워드: a two-dimensional numerical experiment

검색결과 184건 처리시간 0.029초

와동과 상호작용하는 대향류 비예혼합화염의 소염특성 (Extinction in a Counterflow Nonpremixed Flame Interacting with a Vortex)

  • 오창보;이창언
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1401-1411
    • /
    • 2003
  • A two-dimensional direct numerical simulation was performed to investigate the flame structure of CH$_4$$N_2$-air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry were adopted in this simulation. The characteristic vortex and chemical time scales were introduced to quantify and investigate the extinction phenomenon during a flame-vortex interaction. The results showed that fuel- and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex was extinguished at much larger scalar dissipation rate than steady flame. It was also found that the air-side vortex extinguished a flame more rapidly than the fuel-side vortex. Furthermore, it was noted that the degree of unsteady effect experienced by a flame can be investigated by comparing the above two characteristic time scales, and this analysis could give an appropriate reason for the results of the previously reported experiment.

고속탄자 유동의 가시화 실험 및 비정렬격자 계산 (Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

SNUFOAM을 이용한 2차원 선박단면 형상의 입수 충격에 대한 연구 (A STUDY ON WATER ENTRY OF TWO-DIMENSIONAL CROSS-SECTIONAL SHAPE USING SNUFOAM)

  • 장동진;최영민;최학규;이신형
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.55-63
    • /
    • 2016
  • Nowadays, large container ships are continually developed and that's why the bow and stern structural stability problems by slamming become a significant more and more. However, due to the complexity of slamming, it is difficult to consider those problems at the design stage. For this reason, we attempt numerical analysis through SNUFOAM by generating the bow and stern two-dimensional cross-sectional grid in WILS JIP experiment at KRISO. Unlike the conventional method for the computation time saving, by setting the inlet flow conditions referred to the model test, we analyzed the slamming without applying the grid deformation method. As a result, when the stern model, as in the previous studies, it was possible to obtain quantitatively the fluid impulse is close to the experimental results. When the bow model, we can found the change by the position of force sensors which are derived for the bulbous bow and obtained fluid impulse and flow shape at slamming similar to the model test.

축류 송풍기 허브측 불균일 유입유동 현상 및 성능 특성 (Performance Characteristics Due to the Inflow Distortion near Hub in an Axial Flow Fan)

  • 장춘만;최승만;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.663-669
    • /
    • 2005
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, round shape and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depends on the distance between hub-cap and blade leading edge. Flow analysis of the blade passage is peformed by solving the three-dimensional Reynolds-averaged Navier-Stokes equations. numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flowangle. The changed inlet flow angle near the hub invokesa flow separation on the blade surfaces, thus deteriorating the fan efficiency. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  • PDF

버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발 (II) -비선형 해석- (Development of Algorithm for Two Dimensional Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (II) - Nonlinear Analysis -)

  • 정순완;김승조
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1926-1932
    • /
    • 2001
  • In this second part of the paper, the automatic mesh generation and remeshing algorithm using bubble packing method is applied to the nonlinear problem. The remeshing/refinement procedure is necessary in the large deformation process especially because the mesh distortion deteriorates the convergence and accuracy. To perform the nonliear analysis, the transfer of state variables such as displacement and strain is added to the algorithm of Part 1. The equilibrium equation based on total Lagrangian formulation and elasto-viscoplastic model is used. For the numerical experiment, the upsetting process including the contact constraint condition is analyzed by two refinement criteria. And from the result, it is addressed that the present algorithm can generate the refined meshes easily at the largely deformed area with high error.

액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구 (Numerical Studies on the Inducer/Impeller Interaction of a Liquid Rocket Engine Turbopump System)

  • 최창호;차봉준;양수석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.33-40
    • /
    • 2002
  • The hydraulic performance analysis of a pump system composed of an inducer and impeller for the application on turbopumps has been performed using three-dimensional Wavier-Stokes equations. A simple mixing-plane method and a full interaction method are used to simulate inducer/impeller interactions. The computations adopting two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is rather small. But, because the inducer and the impeller are closely spaced near the shroud region at the interface, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicted about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with experimental ones. The computational results at the design point show good agreements with experimental data. But the computation was found to under-predict the head rise at high mass flow rates compared to the experiment, further study must be followed in terms of the computation and experiment.

  • PDF

원형파일군에 의한 파랑제어 특성 (Effects of Wave Dissipation with Circular Cylinders)

  • 이성대;김성득
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.27-33
    • /
    • 2008
  • One of the central problems in astudy of the coastal surface wave environment is predicting the transformation of waves as they propagate toward the shore. The transformation is mainly due to the existence of obstacles, such as breakwaters and vertical cylinders. In general, the types of wave transformation can be classified as follows: wave diffraction, reflection, transmission, scattering, radiation, et al. This research dealtwith wave transmission and dissipation problems for two dimensional irregular waves and vertical circular cylinders. Using the unsteady mild slope equation, a numerical model was developed to calculate the reflection and transmission of regular waves from a multiple-row circular breakwater and vertical cylinders. In addition, hydraulic model experiments were conducted with different values for the properties between tire piles and the opening ratio (distances) between the rows of the breakwater. It was found that the transmission coefficients decreased with a decrease in the opening ratio and an increase in the rows of vertical cylinders. A comparison between the results of hydraulic and numerical experiments showed reasonable agreement.

수리실험을 통한 수평 2열 쉬라우드 조류에너지 변환장치 성능평가 (Performance Assessment of Two Horizontal Shroud Tidal Current Energy Converter using Hydraulic Experiment)

  • 이욱재;최혁진;고동휘
    • 한국해안·해양공학회논문집
    • /
    • 제34권1호
    • /
    • pp.1-10
    • /
    • 2022
  • 본 연구에서는 저유속 조건에서도 발전이 가능한 수평 2열 쉬라우드 조류에너지 변환장치를 개발하였다. 쉬라우드 시스템의 형상을 결정하기 위해 3차원 수치모의 실험을 수행하였으며, 1/6 축소모형을 제작하여 수리모형 실험을 수행하였다. 수리모형 실험은 4가지 유속 조건하에서 수행하였으며, 각각의 실험 케이스별로 유속, 토크 및 RPM을 계측하였다. 수치모의 실험 결과, 노즐을 통과한 유속은 실린더에서 약 2~3배 유속이 증폭되는 것을 확인하였으며, 연장비가 2:1일 때, 가장 높은 유속 증폭율을 보였다. 또한 노즐과 실린더의 직경비는 1.5:1일 때 유속이 2.8배 증가하는 것으로 나타났다. 한편 수리모형 실험 결과, TSR이 1.75~2 일 때, 0.32~0.34의 출력 성능을 보이는 것으로 나타났다.

밀도함수법을 이용한 2차원 슬로싱 현상의 수치시뮬레이션 (Numerical Simulation of Two-dimensional Sloshing Phenomena Using Marker-density Method)

  • 이영길;정광열;이승희
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.650-658
    • /
    • 2009
  • Two dimensional sloshing phenomena in regularly excited liquid cargo tank are numerically simulated with finite difference method. Navier-Stokes equations and continuity equation are computed for this study. The free-surface is determined every time step satisfying kinematic boundary condition using marker-density method. And the exciting force is treated by adding the acceleration of the tank to source term. The results are compared with other existing experiment results. And the comparison results show a good agreement. The sloshing phenomena in the tank of the 138K LNG carrier in sway motion is simulated with present calculation methods in low filling level. To find the relations between impact pressure and excitation condition, the calculations are performed in various amplitudes and periods. The averaged maximum pressures are compared each other.

Numerical Simulation of Ballast Water Exchange

  • Kamada, Koichi;Minami, Kiyokazu;Shiotani, Shigeaki;Shoji, Kuniaki
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.157-165
    • /
    • 2006
  • In February,2004, at International Maritime Organization (IMO), LONDON, a new international convention 'International Convention fur the Control and Management of Ship's Ballast Water and Sediment 2004' was adopted. It is called 'Ballast Water Management Convention (BWM)'. Ballast water means charged seawater or fresh water in ship's special tanks (ballast tank) to keep safety navigation and ship's maneuverability. However, from 1980, it was point out the serious problem for marine ecosystem and human life that ballast water includes harmful marine species (and small organisms) and these species are also discharged along with ballast water. These species were released with discharged ballast water in water areas, where species are different from discharged ballast water. The problem is that released species increase when released species are more powerful than native species and consequently, marine ecological system is destroyed in released water area. Authors have inspected the validity of the ballast water exchange using pumping-through method that is one of the methods of ballast water management. In this paper, the numerical simulation of the motion and density of the fluid at the time of exchange of the fluid in a 2-dimensional tank using the pumping-through method was carried out by using two different type numerical methods. One method is MPS method that is one of the particle methods. Other one is Finite Different Method (FDM). Authors were compared with result of two numerical method calculations and experiment result and reported some knowledge from these results.

  • PDF