• Title/Summary/Keyword: a tracking object

Search Result 1,271, Processing Time 0.028 seconds

Kinematic Method of Camera System for Tracking of a Moving Object

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.145-149
    • /
    • 2010
  • In this paper, we propose a kinematic approach to estimating the real-time moving object. A new scheme for a mobile robot to track and capture a moving object using images of a camera is proposed. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

Object Tracking based on Relaxed Inverse Sparse Representation

  • Zhang, Junxing;Bo, Chunjuan;Tang, Jianbo;Song, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3655-3671
    • /
    • 2015
  • In this paper, we develop a novel object tracking method based on sparse representation. First, we propose a relaxed sparse representation model, based on which the tracking problem is casted as an inverse sparse representation process. In this process, the target template is able to be sparsely approximated by all candidate samples. Second, we present an objective function that combines the sparse representation process of different fragments, the relaxed representation scheme and a weight reference prior. Based on some propositions, the proposed objective function can be solved by using an iteration algorithm. In addition, we design a tracking framework based on the proposed representation model and a simple online update manner. Finally, numerous experiments are conducted on some challenging sequences to compare our tracking method with some state-of-the-art ones. Both qualitative and quantitative results demonstrate that the proposed tracking method performs better than other competing algorithms.

Study on Underwater Object Tracking Based on Real-Time Recurrent Regression Networks Using Multi-beam Sonar Images (실시간 순환 신경망 기반의 멀티빔 소나 이미지를 이용한 수중 물체의 추적에 관한 연구)

  • Lee, Eon-ho;Lee, Yeongjun;Choi, Jinwoo;Lee, Sejin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • This research is a case study of underwater object tracking based on real-time recurrent regression networks (Re3). Re3 has the concept of generic object tracking. Because of these characteristics, it is very effective to apply this model to unclear underwater sonar images. The model also an pursues object tracking method, thus it solves the problem of calculating load that may be limited when object detection models are used, unlike the tracking models. The model is also highly intuitive, so it has excellent continuity of tracking even if the object being tracked temporarily becomes partially occluded or faded. There are 4 types of the dataset using multi-beam sonar images: including (a) dummy object floated at the testbed; (b) dummy object settled at the bottom of the sea; (c) tire object settled at the bottom of the testbed; (d) multi-objects settled at the bottom of the testbed. For this study, the experiments were conducted to obtain underwater sonar images from the sea and underwater testbed, and the validity of using noisy underwater sonar images was tested to be able to track objects robustly.

Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter (배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1537-1545
    • /
    • 2016
  • In real time video sequence, object segmentation and tracking method are actively applied in various application tasks, such as surveillance system, mobile robots, augmented reality. This paper propose a robust object tracking method. The background models are constructed by learning the initial part of each video sequences. After that, the moving objects are detected via object segmentation by using background subtraction method. The region of detected objects are continuously tracked by using the HSV color histogram with particle filter. The proposed segmentation method is superior to average background model in term of moving object detection. In addition, the proposed tracking method provide a continuous tracking result even in the case that multiple objects are existed with similar color, and severe occlusion are occurred with multiple objects. The experiment results provided with 85.9 % of average object overlapping rate and 96.3% of average object tracking rate using two video sequences.

A Study on Tracking a Moving Object using Photogrammetric Techniques - Focused on a Soccer Field Model - (사진측랑기법을 이용한 이동객체 추적에 관한 연구 - 축구장 모형을 중심으로 -)

  • Bae Sang-Keun;Kim Byung-Guk;Jung Jae-Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Extraction and tracking objects are fundamental and important steps of the digital image processing and computer vision. Many algorithms about extracting and tracking objects have been developed. In this research, a method is suggested for tracking a moving object using a pair of CCD cameras and calculating the coordinate of the moving object. A 1/100 miniature of soccer field was made to apply the developed algorithms. After candidates were selected from the acquired images using the RGB value of a moving object (soccer ball), the object was extracted using its size (MBR size) among the candidates. And then, image coordinates of a moving object are obtained. The real-time position of a moving object is tracked in the boundary of the expected motion, which is determined by centering the moving object. The 3D position of a moving object can be obtained by conducting the relative orientation, absolute orientation, and space intersection of a pair of the CCD camera image.

Moving Object Tracking in UAV Video using Motion Estimation (움직임 예측을 이용한 무인항공기 영상에서의 이동 객체 추적)

  • Oh, Hoon-Geol;Lee, Hyung-Jin;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.400-405
    • /
    • 2006
  • In this paper, we propose a moving object tracking algorithm by using motion estimation in UAV(Unmanned Aerial Vehicle) video. Proposed algorithm is based on generation of initial image from detected reference image, and tracking of moving object under the time-varying image. With a series of this procedure, tracking process is stable even when the UAV camera sways by correcting position of moving object, and tracking time is relatively reduced. A block matching algorithm is also utilized to determine the similarity between reference image and moving object. An experimental result shows that our proposed algorithm is better than the existing full search algorithm.

  • PDF

Moving Object Tracking Scheme based on Polynomial Regression Prediction in Sparse Sensor Networks (저밀도 센서 네트워크 환경에서 다항 회귀 예측 기반 이동 객체 추적 기법)

  • Hwang, Dong-Gyo;Park, Hyuk;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.44-54
    • /
    • 2012
  • In wireless sensor networks, a moving object tracking scheme is one of core technologies for real applications such as environment monitering and enemy moving tracking in military areas. However, no works have been carried out on processing the failure of object tracking in sparse sensor networks with holes. Therefore, the energy consumption in the existing schemes significantly increases due to plenty of failures of moving object tracking. To overcome this problem, we propose a novel moving object tracking scheme based on polynomial regression prediction in sparse sensor networks. The proposed scheme activates the minimum sensor nodes by predicting the trajectory of an object based on polynomial regression analysis. Moreover, in the case of the failure of moving object tracking, it just activates only the boundary nodes of a hole for failure recovery. By doing so, the proposed scheme reduces the energy consumption and ensures the high accuracy for object tracking in the sensor network with holes. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme reduces about 47% energy consumption for object tracking over the existing scheme and achieves about 91% accuracy of object tracking even in sensor networks with holes.

Two-dimensional object contour tracking by a force controlled manipulator

  • Choi, Myoung-Hwan;Ko, Myoung-Sam;Lee, Bum-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.892-897
    • /
    • 1987
  • The ability of a robotic manipulator to recognize the shape of an object by feeling its band around the object is useful in many applications. Two-dimensional object contour tracking by force feedback is described. The system consists of IBM PC/AT, PUMA 560 manipulator, PUMA controller and a tip sensor. Position control is accomplished by using VAL command and the unmodified PUMA controller. A contour tracking algorithm is developed and tested on three different types of objects. The experimental results show that the objects' shapes can be successfully identified.

  • PDF

Target Image Exchange Model for Object Tracking Based on Siamese Network (샴 네트워크 기반 객체 추적을 위한 표적 이미지 교환 모델)

  • Park, Sung-Jun;Kim, Gyu-Min;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.389-395
    • /
    • 2021
  • In this paper, we propose a target image exchange model to improve performance of the object tracking algorithm based on a Siamese network. The object tracking algorithm based on the Siamese network tracks the object by finding the most similar part in the search image using only the target image specified in the first frame of the sequence. Since only the object of the first frame and the search image compare similarity, if tracking fails once, errors accumulate and drift in a part other than the tracked object occurs. Therefore, by designing a CNN(Convolutional Neural Network) based model, we check whether the tracking is progressing well, and the target image exchange timing is defined by using the score output from the Siamese network-based object tracking algorithm. The proposed model is evaluated the performance using the VOT-2018 dataset, and finally achieved an accuracy of 0.611 and a robustness of 22.816.

Realization for Moving Object Tracking System in Two Dimensional Plane using Stereo Line CCD

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sun, Min-Gui;Sclabassi, Robert
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.157-160
    • /
    • 2008
  • A realization for moving object detecting and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. Instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution and mean error is 1.89%, and enables to track a moving path of object per 100ms period.

  • PDF