• Title/Summary/Keyword: a tracking object

Search Result 1,271, Processing Time 0.026 seconds

Active Object Tracking using Image Mosaic Background

  • Jung, Young-Kee;Woo, Dong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • In this paper, we propose a panorama-based object tracking scheme for wide-view surveillance systems that can detect and track moving objects with a pan-tilt camera. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region. Each moving object is segmented by image subtraction from the mosaic background. The proposed tracking system has demonstrated good performance for several test video sequences.

Tracking of Moving Object using Fuzzy Prediction (퍼지 예측을 이용한 이동물체 추적)

  • Lim, Yong-Ho;Baek, Joong-Hwan;Hwang, Soo-Chan
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.26-36
    • /
    • 2001
  • One of the most important problems in time-varying image sequences is the automatic target tracking. This paper proposes a position prediction and tracking technique of moving object using fuzzy prediction. First, the object is segmented from background of the image using accumulative difference image technique. Then centroid of the segmented object is extracted by using the centroid method, and we propose to apply variable size searching window to the object in order to increase the tracking performance. Also, non-linear prediction is required for efficient object tracking. Therefore, in this paper, fuzzy prediction method is proposed for predicting the location of the moving object at next frame. An experimental result shows that the proposed fuzzy prediction system tracks the moving object in stable under various conditions.

  • PDF

Implementation of Object Tracking for IR Images Using PowerPC based System (PowerPC 기반의 IR 영상 객체 추적기 구현)

  • Lee, Jae-Ik;Lee, Jun-Haeng;Park, Chang-Han
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.213-214
    • /
    • 2007
  • In this paper, we implement one tracking scheme based on the block matching using PowerPC system. We implement tracking algorithm uses the information from Infrared (IR) sensor for tracking object. When a occlusion occurs, the proposed algorithm predicts movements of an object using the historical tracking information and it can keep the object tracking.

  • PDF

Robust Visual Tracking for 3-D Moving Object using Kalman Filter (칼만필터를 이용한 3-D 이동물체의 강건한 시각추적)

  • 조지승;정병묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1055-1058
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is the use of different model (CAD model etc.) known a priori. Also fusion or multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Voting-based fusion of cues is adapted. In voting. a very simple or no model is used for fusion. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters. namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

Implementation of a Single Image Detection and Tracking System in Multiple Images (다중 이미지에서 단일 이미지 검출 및 추적 시스템 구현)

  • Choi, Jaehak;Park, Inho;Kim, Seongyoon;Lee, Yonghwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.78-81
    • /
    • 2017
  • Augmented Reality(AR) is the core technology of the future knowledge service industry. It is expected to be used in various fields such as medical, education, entertainment etc. Briefly, augmented reality technology is a technique in which a mapped virtual object is augmented when a real-world object is viewed through a device after mapping a real-world object and a virtual object. In this paper, we implemented object detection and tracking system, which is a key technology of augmented reality. To speed up the object tracking, the ORB algorithm, which is a lightweight algorithm compared to the detection algorithm, is applied. In addition, KNN classifier, which is a machine learning algorithm, was applied to detect a single object by learning multiple images.

  • PDF

Person-following of a Mobile Robot using a Complementary Tracker with a Camera-laser Scanner (카메라-레이저스캐너 상호보완 추적기를 이용한 이동 로봇의 사람 추종)

  • Kim, Hyoung-Rae;Cui, Xue-Nan;Lee, Jae-Hong;Lee, Seung-Jun;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.78-86
    • /
    • 2014
  • This paper proposes a method of tracking an object for a person-following mobile robot by combining a monocular camera and a laser scanner, where each sensor can supplement the weaknesses of the other sensor. For human-robot interaction, a mobile robot needs to maintain a distance between a moving person and itself. Maintaining distance consists of two parts: object tracking and person-following. Object tracking consists of particle filtering and online learning using shape features which are extracted from an image. A monocular camera easily fails to track a person due to a narrow field-of-view and influence of illumination changes, and has therefore been used together with a laser scanner. After constructing the geometric relation between the differently oriented sensors, the proposed method demonstrates its robustness in tracking and following a person with a success rate of 94.7% in indoor environments with varying lighting conditions and even when a moving object is located between the robot and the person.

A Study on Algorithm for Efficient Location Tracking in Indoor Environment (실내 환경에서 효율적인 위치 추적을 위한 알고리즘에 관한 연구)

  • Jeon Hyeon-Sig;Woo Sung-Hyun;Lee Ho-Eung;Ryu In-Seon;Yoon Sung-Kun;Park Hyun-Ju
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.3
    • /
    • pp.59-74
    • /
    • 2006
  • According to developing Wireless Communication, not only a location based service at the outside but also a location based service at the inside was more increased socially. This paper proposes the efficient algorithm to locate a transfer object in frequent change of indoor environment using indoor location tracking system we develop ourself. Proposing algorithm in this paper can locate a transfer object using the Fingerprint, one of the Location Tracking techniques which are used in general to minimize error data between Location Tracking System and Fingerprint, using this way that corrects location data as KF apply to result data can improve accuracy of a transfer object. At last we are going to compare and analyze existing typical triangulation with proposed Indoor location tracking system to demonstrate algorithm efficiency for proposed Indoor location tracking system.

  • PDF

Efficient Tracking of a Moving Object using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.495-502
    • /
    • 2003
  • This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.

Tracking Method for Moving Object Using Depth Picture (깊이 화면을 이용한 움직임 객체의 추적 방법)

  • Kwon, Soon-Kak;Kim, Heung-Jun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.774-779
    • /
    • 2016
  • The conventional methods using color signal for tracking the movement of the object require a lot of calculation and the performance is not accurate. In this paper, we propose a method to effectively track the moving objects using the depth information from a depth camera. First, it separates the background and the objects based on the depth difference in the depth of the screen. When an object is moved, the depth value of the object becomes blurred because of the phenomenon of Motion Blur. In order to solve the Motion Blur, we observe the changes in the characteristics of the object (the area of the object, the border length, the roundness, the actual size) by its velocity. The proposed algorithm was implemented in the simulation that was applied directly to the tracking of a golf ball. We can see that the estimated value of the proposed method is accurate enough to be very close to the actual measurement.