• Title/Summary/Keyword: a tracking object

Search Result 1,268, Processing Time 0.025 seconds

Preprocessing for Tracking of Moving Object (이동 물체 추적을 위한 전 처리)

  • 홍승범;백중환
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.82-85
    • /
    • 2003
  • This paper proposes a preprocessing method for tracking aircraft's take-off and lading. The method uses accumulative difference image technique for segmenting the object from the background, and obtains the centroid of the object exactly using centroid method. Then the moving object is analyzed and represented with the information such as feature point, velocity, and distance. A simulation result reveals that the proposed algorithm has good performance in segmenting and tracking the aircraft.

  • PDF

Meta Learning based Object Tracking Technology: A Survey

  • Ji-Won Baek;Kyungyong Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2067-2081
    • /
    • 2024
  • Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

Offline Object Tracking for Private Information Masking in CCTV Data (CCTV 개인영상 정보보호를 위한 오프라인 객체추적)

  • Lee, Suk-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2961-2967
    • /
    • 2014
  • Nowadays, a private protection act has come into effect which demands for the protection of personal image information obtained by the CCTV. According to this act, the object out of interest has to be mosaicked such that it can not be identified before the image is sent to the investigation office. Meanwhile, the demand for digital videos obtained by CCTV is also increasing for digital forensic. Therefore, due to the two conflicting demands, the demand for a solution which can automatically mask an object in the CCTV video is increasing and related IT industry is expected to grow. The core technology in developing a target masking solution is the object tracking technique. In this paper, we propose an object tracking technique which suits for the application of CCTV video object masking as a postprocess. The proposed method simultaneously uses the motion and the color information to produce a stable tracking result. Furthermore, the proposed method is based on the centroid shifting method, which is a fast color based tracking method, and thus the overall tracking becomes fast.

Enhanced Representation for Object Tracking (물체 추적을 위한 강화된 부분공간 표현)

  • Yun, Frank;Yoo, Haan-Ju;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.408-410
    • /
    • 2009
  • We present an efficient and robust measurement model for visual tracking. This approach builds on and extends work on subspace representations of measurement model. Subspace-based tracking algorithms have been introduced to visual tracking literature for a decade and show considerable tracking performance due to its robustness in matching. However the measures used in their measurement models are often restricted to few approaches. We propose a novel measure of object matching using Angle In Feature Space, which aims to improve the discriminability of matching in subspace. Therefore, our tracking algorithm can distinguish target from similar background clutters which often cause erroneous drift by conventional Distance From Feature Space measure. Experiments demonstrate the effectiveness of the proposed tracking algorithm under severe cluttered background.

  • PDF

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

A Study on Utilizing Smartphone for CMT Object Tracking Method Adapting Face Detection (얼굴 탐지를 적용한 CMT 객체 추적 기법의 스마트폰 활용 연구)

  • Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.588-594
    • /
    • 2021
  • Due to the recent proliferation of video contents, previous contents expressed as the character or the picture are being replaced to video and growth of video contents is being boosted because of emerging new platforms. As this accelerated growth has a great impact on the process of universalization of technology for ordinary people, video production and editing technologies that were classified as expert's areas can be easily accessed and used from ordinary people. Due to the development of these technologies, tasks like that recording and adjusting that depends on human's manual involvement could be automated through object tracking technology. Also, the process for situating the object in the center of the screen after finding the object to record could have been automated. Because the task of setting the object to be tracked is still remaining as human's responsibility, the delay or mistake can be made in the process of setting the object which has to be tracked through a human. Therefore, we propose a novel object tracking technique of CMT combining the face detection technique utilizing Haar cascade classifier. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the smartphone in real time.

Reinforced Feature of Dynamic Search Area for the Discriminative Model Prediction Tracker based on Multi-domain Dataset (다중 도메인 데이터 기반 구별적 모델 예측 트레커를 위한 동적 탐색 영역 특징 강화 기법)

  • Lee, Jun Ha;Won, Hong-In;Kim, Byeong Hak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.323-330
    • /
    • 2021
  • Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.

Deep Learning-based Approach for Visitor Detection and Path Tracking to Enhance Safety in Indoor Cultural Facilities (실내 문화시설 안전을 위한 딥러닝 기반 방문객 검출 및 동선 추적에 관한 연구)

  • Wonseop Shin;Seungmin, Rho
    • Journal of Platform Technology
    • /
    • v.11 no.4
    • /
    • pp.3-12
    • /
    • 2023
  • In the post-COVID era, the importance of quarantine measures is greatly emphasized, and accordingly, research related to the detection of mask wearing conditions and prevention of other infectious diseases using deep learning is being conducted. However, research on the detection and tracking of visitors to cultural facilities to prevent the spread of diseases is equally important, so research on this should be conducted. In this paper, a convolutional neural network-based object detection model is trained through transfer learning using a pre-collected dataset. The weights of the trained detection model are then applied to a multi-object tracking model to monitor visitors. The visitor detection model demonstrates results with a precision of 96.3%, recall of 85.2%, and an F1-score of 90.4%. Quantitative results of the tracking model include a MOTA (Multiple Object Tracking Accuracy) of 65.6%, IDF1 (ID F1 Score) of 68.3%, and HOTA (Higher Order Tracking Accuracy) of 57.2%. Furthermore, a qualitative comparison with other multi-object tracking models showcased superior results for the model proposed in this paper. The research of this paper can be applied to the hygiene systems within cultural facilities in the post-COVID era.

  • PDF

Tracking of Moving Object Based on Embedded System (임베디드 기반의 이동물체 추적)

  • Jung, Dae-Yung;Lee, Sang-Lak;Choi, Han-Go
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.209-212
    • /
    • 2005
  • This paper describes detection and tracking of a moving object for unmanned visual surveillance. security systems. Using images obtained from camera it detects and tracks a moving object and displays bounding box enclosing the moving object. The algorithm for detection and tracking is tested using a personal computer, and then implemented on EMPOS II embedded system. Simulation results show that the tracking of a moving object based on embedded system is working well. However it needs to improve image acquisition time for real time implementation to apply security systems.

  • PDF