• 제목/요약/키워드: a super-long span bridge

검색결과 32건 처리시간 0.061초

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

단일 현장타설말뚝의 설계시 지반 모델링 방법 (Soil Modelling Method to Design Bent Foundation with Drilled Shaft Pier)

  • 전경수;한경봉;송필용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.368-376
    • /
    • 2010
  • 암반의 심도가 얕은 국내지반에서는 푸팅을 사용하지 않는 벤트기초가 매우 경제적인 공법이다. 현장타설말뚝을 이용한 벤트기초공법은 탄성설계로 제한하여 설계를 수행하여 왔으나, 도로교 설계기준에서 제시하는 소성설계를 적용하는 경우 소성힌지 발생지점이 지중에 위치하여 유지관리가 불가하고 소성힌지부에 적용하는 심부구속 철근의 간격 및 보강범위에 대한 기준 제정이 필요하다. 또한 지반의 소성 거동을 모델링 하는 것은 구조 해석시 실무적으로 매우 어려움이 많아 정밀한 해석이 필요하지 않는 경우에 대한 근사 해석법 제시가 필요하다. 본 논문에서는 직경 1m의 현장타설말뚝을 사질토지반에 시공하여 지상 4m 높이에서 반복 재하시험을 수행하여 지반 및 말뚝의 거동을 파악하였으며, 기둥으로서의 거동을 함께 파악하였다. 소성힌지를 지상부에 유도하기 위하여 직경을 변화시키거나, 지중에 강관을 삽입하는 방법을 적용하였으며, 실험결과에 대하여 선형탄성 및 p-y 곡선등 다양한 예측방법과 교량에 대한 모의 설계를 통하여 지반 모델링 방법에 따른 해석결과를 비교하였으며, 실무적으로 적용할 수 있는 설계기준을 제시하였다.

  • PDF

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

강지진시 인접교량간의 충돌 매커니즘과 충격 저감 효과 (Pounding Mechanism and Mitigation Effect of Pounding between Adjacent Decks during Strong Earthquake)

  • 권영록;김진우;최광규
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.63-69
    • /
    • 2006
  • An isolated bridge using a laminated rubber bearing provides an elastic support of continuous span and prevents the transmission of excessive seismic force from the substructure of the bridge, which uses a metal bearing, as this permits a relative displacement between the super-and substructure. Hawever, this kind of bridge is caused long periodic, as a result of enlargingtotal thickness of the rubber, since it corresponds to temperature change and increases the horizontal displacement of the superstructure. This paper uses a numerical study to describe the pounding problem between adjacent decks when subjected to a strong earthquake. Furthermore, numerical results are clarified for the buffer rubber used to mitigate the pounding force between adjacent decks.

수치해석에 의한 중소형교량 교량기초의 허용침하량 평가 (A Numerical Analysis of Tolerable Settlement for Bridges)

  • 정경자;전경수;조준상;이상헌;변형균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.569-579
    • /
    • 2010
  • Tolerable vertical displacement of a bridge is dependent on the superstructure-type, slope, span, and etc.. In the design stage, however, resultant force of cross section is examined supposed that the settlement is 1 cm at the bearing point. And the 1cm is sometimes considered as if the criteria of allowable foundation settlement. It is needed to establish the criteria of the tolerable displacement for the small and middle bridges which are widely used in domestic area. The design data of domestic bridges including expressway bridges were collected and analyzed according to the types of superstructures and foundations. And numerical simulations were conducted for RC rigid frame bridges, PSC girder bridges, IPC girder bridges, PSC box girder bridges, and steel box girder bridges to examine the tolerable displacements.

  • PDF

Design strategy of hybrid stay cable system using CFRP and steel materials

  • Xiong, Wen;Cai, C.S.;Xiao, Rucheng;Zhang, Yin
    • Steel and Composite Structures
    • /
    • 제13권1호
    • /
    • pp.47-70
    • /
    • 2012
  • To enhance cable stiffness, this paper proposed a combined application of carbon fiber reinforced polymers (CFRP) and steel materials, resulting in a novel type of hybrid stay cable system especially for the cable-stayed bridges with main span lengths of 1400~2800 m. In this combination, CFRP materials can conserve all their advantages such as light weight and high strength; while steel materials help increase the equivalent stiffness to compensate for the low elastic modulus of CFRP materials. An increase of the equivalent stiffness of the hybrid stay cable system could be further obtained with a reasonable increase of its safety factor. Following this concept, a series of parametric studies for the hybrid stay cable system with the consideration of stiffness and cost were carried out. Three design strategies/criteria, namely, best equivalent stiffness with a given safety factor, highest ratio of equivalent stiffness to material cost with a given safety factor, and best equivalent stiffness under a given cost were proposed from the stiffness and cost viewpoints. Finally, a comprehensive design procedure following the proposed design strategies was suggested. It was shown that the proposed hybrid stay cable system could be a good alternative to the pure CFRP or traditional steel stay cables in the future applications of super long span bridges.

Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment

  • Ma, Lin;Zhou, Dajun;Han, Wanshui;Wu, Jun;Liu, Jianxin
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.211-234
    • /
    • 2016
  • Super long-span bridges provide people with great convenience, but they also bring traffic safety problems caused by strong wind owing to their high decks. In this paper, the large eddy simulation together with dynamic mesh technology in computational fluid dynamics (CFD) is used to explore the mechanism of a moving vehicle's transient aerodynamic force in crosswind, the regularity and mechanism of the vehicle's aerodynamic forces when it passes through a bridge tower's wake zone in crosswind. By comparing the calculated results and those from wind tunnel tests, the reliability of the methods used in the paper is verified on a moving vehicle's aerodynamic forces in a bridge tower's wake region. A vehicle's aerodynamic force coefficient decreases sharply when it enters into the wake region, and reaches its minimum on the leeward of the bridge tower where exists a backflow region. When a vehicle moves on the outermost lane on the windward direction and just passes through the backflow region, it will suffer from negative lateral aerodynamic force and yaw moment in the bridge tower's wake zone. And the vehicle's passing ruins the original vortex structure there, resulting in that the lateral wind on the right side of the bridge tower does not change its direction but directly impact on the vehicle's windward. So when the vehicle leaves from the backflow region, it will suffer stronger aerodynamic than that borne by the vehicle when it just enters into the region. Other cases of vehicle moving on different lane and different directions were also discussed thoroughly. The results show that the vehicle's pneumatic safety performance is evidently better than that of a vehicle on the outermost lane on the windward.

An estimation of static aerodynamic forces of box girders using computational fluid dynamics

  • Watanabe, Shigeru;Inoue, Hiroo;Fumoto, Koichiro
    • Wind and Structures
    • /
    • 제7권1호
    • /
    • pp.29-40
    • /
    • 2004
  • This study has focused on aerodynamics for a wind-resistance design about the single and tandem box girder sections to realize a super-long span bridge in the near future. Three-dimensional static analysis of flows around the fundamental single and tandem box girder sections with fairing is carried out by means of the IBTD/FS finite element technique with LES turbulence model. As the results of the analysis, computations have verified aerodynamic characteristics of both sections by the histories of aerodynamic forces, the separation and reattachment flow patterns and the surface pressure distributions. The relationship between the section shapes and the aerodynamic characteristics is also investigated in both sections. And the mechanism about the generation of fluctuating aerodynamic forces is discussed.

Investigation on the effect of vibration frequency on vortex-induced vibrations by section model tests

  • Hua, X.G.;Chen, Z.Q.;Chen, W.;Niu, H.W.;Huang, Z.W.
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.349-361
    • /
    • 2015
  • Higher-mode vertical vortex-induced vibrations (VIV) have been observed on several steel box-girder suspension bridges where different vertical modes are selectively excited in turn with wind velocity in accordance with the Strouhal law. Understanding the relationship of VIV amplitudes for different modes of vibration is very important for wind-resistant design of long-span box-girder suspension bridges. In this study, the basic rectangular cross-section with side ratio of B/D=6 is used to investigate the effect of different modes on VIV amplitudes by section model tests. The section model is flexibly mounted in wind tunnel with a variety of spring constants for simulating different modes of vibration and the non-dimensional vertical amplitudes are determined as a function of reduced velocity U/fD. Two 'lock-in' ranges are observed at the same onset reduced velocities of approximately 4.8 and 9.4 for all cases. The second 'lock-in' range, which is induced by the conventional vortex shedding, consistently gives larger responses than the first one and the Sc-normalized maximum non-dimensional responses are almost the same for different spring constants. The first 'lock-in' range where the vibration frequency is approximately two times the vortex shedding frequency is probably a result of super-harmonic resonance or the "frequency demultiplication". The main conclusion drawn from the section model study, central to the higher-mode VIV of suspension bridges, is that the VIV amplitude for different modes is the same provided that the Sc number for these modes is identical.

다양한 예측기법을 이용한 현장타설말뚝의 최적길이 산정 (Estimation of Optimum Pile length Using Various Prediction)

  • 최영석;임형준;송명준;장학성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.700-707
    • /
    • 2008
  • As plan connecting island to island or island to land is needed, a lot of long-span bridge is being designed lately in Southern part of Korea. With development of pile equipment, overhanging large-scaled concrete pile are adopted to foundation type of main tower or pylon. About the number of 15~30 group piles per tower foundation is designed to resist long-spaning super-structure load, but by restricted condition of site investigation cost, a few boring-hole tests are performed to identify sub-ground layers. Up to now, direct-curved method connecting two or three known boring logs and representative interval method are usually used to evaluate unknown depth and rock properties at locations where piles are constructed. Because this approach is not logical and so rough, much difference occurs between designed length of piles and real length of it. In this paper, using a lot of various prediction method(reciprocal distance method, inverse square distance method and kriging method etc.), we suggest optimum length of group piles.

  • PDF