• Title/Summary/Keyword: a shortest route

Search Result 181, Processing Time 0.027 seconds

Ant Algorithm for Dynamic Route Guidance in Traffic Networks with Traffic Constraints (회전 제약을 포함하고 있는 교통 네트워크의 경로 유도를 위한 개미 알고리즘)

  • Kim, Sung-Soo;Ahn, Seung-Bum;Hong, Jung-Ki;Moon, Jae-Ki
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.185-194
    • /
    • 2008
  • The objective of this paper is to design the dynamic route guidance system(DRGS) and develop an ant algorithm based on routing mechanism for finding the multiple shortest paths within limited time in real traffic network. The proposed ant algorithm finds a collection of paths between source and destination considering turn-restrictions, U-turn, and P-turn until an acceptable solution is reached. This method can consider traffic constraints easily comparing to the conventional shortest paths algorithms.

Local Flooding-based AODV Protocol in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 지역적인 플러딩 기반 AODV 프로토콜)

  • Choi, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.415-418
    • /
    • 2018
  • To reduce the flooding overhead of typical AODV, we propose a local flooding initiated by a destination. The proposed routing protocol determines the one-hop neighbor nodes around the shortest path between source and destination by overhearing, and periodically generate flooding at the destination to cope with topology changes. This flooding process involves only one-hop neighbor nodes around the shortest path for reducing the flooding overhead and forms multiple alternate paths around the shortest path. This makes it possible to seamlessly route to the newest shortest path around when the current routing path is disconnected.

  • PDF

Simulation of Evacuation Route Scenarios Through Multicriteria Analysis for Rescue Activities

  • Castillo Osorio, Ever Enrique;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.303-313
    • /
    • 2019
  • After a disaster happens in urban areas, many people need support for a quick evacuation. This work aims to develop a method for the calculation of the most feasible evacuation route inside buildings. In the methodology we simplify the geometry of the structural and non structural elements from the BIM (Building Information Modeling) to store them in a spatial database which follows standards to support vector data. Then, we apply the multicriteria analysis with the allocation of prioritization values and weight factors validated through the AHP (Analytic Hierarchy Process), in order to obtain the Importance Index S(n) of the elements. The criteria consider security conditions and distribution of the building's facilities. The S(n) is included as additional heuristic data for the calculation of the evacuation route through an algorithm developed as a variant of the $A^*$ pathfinding, The experimental results in the simulation of evacuation scenarios for vulnerable people in healthy physical conditions and for the elderly group, shown that the conditions about the wide of routes, restricted areas, vulnerable elements, floor roughness and location of facilities in the building applied in the multicriteria analysis has a high influence on the processing of the developed variant of $A^*$ algorithm. The criteria modify the evacuation route, because they considers as the most feasible route, the safest instead of the shortest, for the simulation of evacuation scenarios for people in healthy physical conditions. Likewise, they consider the route with the location of facilities for the movement of the elderly like the most feasible in the simulation of evacuation route for the transit of the elderly group. These results are important for the assessment of the decision makers to select between the shortest or safest route like the feasible for search and rescue activities.

A Kth Shortest Path Algorithm with the Link-Based Label Setting Approach and Its Application for An Alternative Routes Selection (링크표지확정 다수경로탐색 알고리즘과 대안경로선정을 위한 활용)

  • Lee, Mee-Young;Baik, Nam-Cheol;Kang, Weon-Eui;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.85-96
    • /
    • 2004
  • Given a Path represented by a sequence of link numbers in a transportation network, the reasonable path is defined as a path that any link is appeared multiple times in it. Application of the link labelmethod(LLM) to the shortest path algorithms(SPA) enables to model the reasonable path choice behavior in urban networks. This study aims at expanding the LLM to a Kth shortest path algorithms(KPSA), which adopts the node label setting method. The small-scaled network test demonstrated that the proposed algorithm works correctly and the revised Sioux fall network test showed that the path choice behaviors are reasonably reflected. In the large-scaled network based on the South Korea peninsula, drivers' route diversion perceptions are included as cost terms in total cost. The algorithm may be applied as an alternative route information tools for the deployment of ATIS.

A Route Selection Algorithm using a Statistical Approach (통계적 기법을 이용한 경로 선택 알고리즘)

  • Kim, Young-Min;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Since most of the current route selection algorithms use the shortest path algorithm, network resources can not be efficiently used also traffics be concentrated on specific paths resulting in congestgion. In this paper we propose the statistical route selections(SRS) algorithm which adopts a statistical mechanism to utilize the network resource efficiently and to avoid congestion. The SRS algorithm handles requests on demand and chooses a path that meets the requested bandwidth. With the advent of the MPLS it becomes possible to establish an explicit LSP which can be used for traffic load balancing. The SRS algorithm finds a set of link utilizations for route selection, computes link weights using statistical mechanism and finds the shortest path from the weights. Our statistical mechanism computes the mean and the variance of link utilizations and selects a route such that it can reduce the variance and the number of congested links and increase the utilization of network resources. Throughout the simulation, we show that the SRS algorithm performs better than other route selection algorithms on several metrics like the number of connection setup failures and the number of congested links.

A Study on Decision to The Movement Routes Using fuzzy Shortest path Algorithm (퍼지 최단경로기법을 이용한 부대이동로 선정에 관한 연구)

  • Choe Jae-Chung;Kim Chung-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.2
    • /
    • pp.66-95
    • /
    • 1992
  • Shortest paths are one of the simplest and most widely used concepts in deterministic networks. A decison of troops movement route can be analyzed in the network with a shortest path algorithm. But in reality, the value of arcs can not be determined in the network by crisp numbers due to imprecision or fuzziness in parameters. To account for this reason, a fuzzy network should be considered. A fuzzy shortest path can be modeled by general fuzzy mathematical programming and solved by fuzzy dynamic programming. It can be formulated by the fuzzy network with lingustic variables and solved by the Klein algorithm. This paper focuses on a revised fuzzy shortest path algorithm and an application is discussed.

  • PDF

A fast shortest path algorithm for road networks having turn prohibitions (회전제한이 있는 도로망을 위한 고속 최적경로 알고리즘)

  • 성태경;명선영;홍원철
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.73-85
    • /
    • 1999
  • In metropolitan area, intersections having turn Prohibitions are often found and it is important to consider them in path planning. This Paper presents a new path planning method road networks having turn prohibitions. A new road network model is proposed in which an alter-native route for each turn-Prohibition is constructed in off-line using U-turn or P-turn and then Put into road network database. The proposed network model is efficient since it requires no virtual nodes that are usually used in the conventional road networks to represent turns at intersections. In order to find a shortest path with the proposed network, a new shortest path algorithm is proposed. A knot for the turn-Prohibited node is newly defined and is used in comparing the cost of the alternative route with that of the other path.

  • PDF

A Study on Route Optimization Scheme using Correspondent Information for in the PMIPv6 considering Inter-MAG (Inter-MAG이 고려된 PMIPv6 환경에서 전달자 정보를 이용한 경로 최적화 기법에 관한 연구)

  • Choi, Young Hyun;Park, Min Woo;Eom, Jung Ho;Chung, Tai M
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.59-68
    • /
    • 2010
  • In the paper, we proposed the Using Correspondent Information for Route Optimization on PMIPv6 over Inter-MAG. Proxy Mobile IPv6 has the problem that a mobile node sends data packets through inefficient routing paths when communicating other mobile node. Route optimization schemes are proposed to solve the triangle routing problem that creates the shortest routing path by leaving the inefficient routing paths. We proposed Correspondent Information Route Optimization scheme to reduce signaling cost as compared with other route optimization scheme. We can reduce signaling cost of route optimization through the Correspondent Information message on basic PMIPv6 and hand-off environment.

An Approximate Shortest Path Re-Computation Method for Digital Road Map Databases in Mobile Computing Environments (모바일 컴퓨팅 환경에서의 디지털 로드맵 데이타베이스를 위한 근접 최단 경로 재계산 방법)

  • 김재훈;정성원;박성용
    • Journal of KIISE:Databases
    • /
    • v.30 no.3
    • /
    • pp.296-309
    • /
    • 2003
  • One of commercial applications of mobile computing is ATIS(Advanced Traveler Information Systems) in ITS(Intelligent Transport Systems). In ATIS, a primary mobile computing task is to compute the shortest path from the current location to the destination. In this paper, we have studied the shortest path re-computation problem that arises in the DRGS(Dynamic Route Guidance System) in ATIS where the cost of topological digital road map is frequently updated as traffic condition changes dynamically. Previously suggested methods either re-compute the shortest path from scratch or re-compute the shortest path just between the two end nodes of the edge where the cost change occurs. However, these methods we trivial in that they do not intelligently utilize the previously computed shortest path information. In this paper, we propose an efficient approximate shortest path re-computation method based on the dynamic window scheme. The proposed method re-computes an approximate shortest path very quickly by utilizing the previously computed shortest path information. We first show the theoretical analysis of our methods and then present an in-depth experimental performance analysis by implementing it on grid graphs as well as a real digital road map.

GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network

  • Park, Hae-Woong;Won, Soo-Seob;Kim, So-Jung;Song, Joo-Seok
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.1529-1532
    • /
    • 2004
  • A Mobile Ad Hoc NETwork (MANET) is a collection of wireless mobile nodes that forms a temporary network without the need for any existing network infrastructure or centralized administration. Therefore, such a network is designed to operate in a highly dynamic environment due to node mobility. In mobile ad hoc network, frequent topological changes cause routing a challenging problem and without the complete view of the network topology, establishing the shortest path from the source node to the destination node is difficult. In this paper, we suggest a routing approach which utilizes location information to setup the shortest possible path between the source node and the destination node. Location information is obtained through Global Positioning System (GPS) and this geographical coordinate information of the destination node is used by the source node and intermediate nodes receiving route request messages to determine the shortest path to the destination from current node.

  • PDF