• 제목/요약/키워드: a roll control loop

검색결과 48건 처리시간 0.023초

속도감은 강건제어에 의한 롤 운동 특성개선 (Enhancement of Roll Stability by Speed-Adaptive Robust Control)

  • 김효준;박영필
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.167-175
    • /
    • 2001
  • This paper presents design of active roll controller of a vehicle and experimental study using the electric actuating roll control system. Firstly, parameter sensitivity analysis is performed based on 3DOF linear vehicle model. The controller is designed in the frame work of gain-scheduled H$\infty$ control scheme considering the varying parameters induced by laden and running vehicle condition. In order to investigate a feasibility of an active control system, experimental work is performed using hardware-in-the -loop setup which has been constructed by the devised electric actuating system and the full vehicle model with tire characteristics. The performance is evaluated by experiment using hardware-in-the -loop simulation under the conditions of some steer maneuvers and parameter variations.

  • PDF

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

무궁화 방송통신 위성의 3축 자세 안정화 장치에 관한 연구 (A study on the 3-axis attitude stabilization of Koreasat)

  • 진익민;백명진;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.793-798
    • /
    • 1993
  • In this study the attitude control of the KOREASAT is investigated. The KOREASAT is a geostationary satellite and its 3 attitude angles, namely, roll, pitch and yaw angles, are stabilized by using the 3-axis stabilization technique. In the pitch control loop, the pitch attitude angle received from the earth sensor is processed in the attitude processing electronics by using PI type control logic, and the control command is sent to the momentum wheel assembly to generate the control torque by varying the wheel rate. The roll/yaw attitude control is performed by activating a magnetic torquer or by firing appropriate thrusters. The magnetic torquer interacts with the earth magnetic field to produce the control torque, and the thrusters are used to control the larger roll attitude errors. In this study dynamic modelling of the satellite is performed. And the earth sensor, the momentum wheel, and the magnetic torquer are mathematically modelled. The 3-axis attitude control logic is implemented to make the closed-loop system and simulations are carried out to verify the implemented control laws.

  • PDF

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed;WANG, Haoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.688-696
    • /
    • 2017
  • This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

인공위성의 Roll축 자세제어시스템 설계 및 검증 (Design and Verification of Satellite Attitude Control system for Roll Maneuver)

  • 김희섭;김기석;안재명;김유단;최완식
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.370-378
    • /
    • 1999
  • KOMPSAT is a three-axis stabilized light weight satellite, and one of the main mission objectives of the KOMPSAT is to conduct scientific and technological analysis in the areas of high resolution imaging and ocean color imaging. This kind of mission requires the satellite to roll up to 45 degrees. Bang-bang control for this rolling maneuver may activate the flexible modes, and therefore cause satellite pointing performance degradation. To deal with this problem, the roll attitude control system, especially for the science mode and maneuver mode of the KOMPSAT, is first verified by numerical simulation. And the open-loop control law for roll maneuver is proposed by use of series expansion and optimization. The proposed control law is applied to KOMPSAT to see its effectiveness.

  • PDF

차량 안정성 향상을 위한 ESC와 ARS의 통합 샤시 제어 알고리즘 개발 (An Investigation into Coordinated Control of 4-wheel Independent Brakes and Active Roll Control System for Vehicle Stability)

  • 허현동;이경수;서지윤;김종갑
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.37-43
    • /
    • 2013
  • This paper describes an investigation into coordinated control of electronic stability control (ESC) and active roll control system (ARS). The coordinated control is suggested to improve the vehicle stability and agility features by yaw rate control. The proposed integrated chassis control algorithm consists of a supervisor, control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate and desired roll motion based on control modes to improve vehicle stability. According to the corresponding the desired vehicle dynamics, the control algorithm calculated a desired yaw moment and desired roll moment, respectively. Based on the desired yaw moment and the desired roll moment, the coordinator determines the brake pressures and the ARC motor torques based on control strategies. Closed loop simulations with a driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy using CarSim vehicle dynamics software and the integrated controller coded using Matlab/Simulink.

HYBRID ROLL CONTROL USING ELECTRIC ARC SYSTEM CONSIDERING LIMITED BANDWIDTH OF ACTUATING MODULE

  • Kim, H.J.;Lee, C.R.
    • International Journal of Automotive Technology
    • /
    • 제3권3호
    • /
    • pp.123-128
    • /
    • 2002
  • This paper presents the design of an active roll control system for a ground vehicle and an experimental study using an devised electric-actuating roll control system. Based on a three degree of freedom linear vehicle model, the controller is designed using lateral acceleration and rollrate feedback. In order to investigate the feasibility of an active control system, experimental work is carried out using a hardware-in-the-loop (Hil) setup which has been constructed by the devised electric-actuating system and the full vehicle model including tire characteristics. The performance is evaluated by an experiment using the Hil setup with limited bandwidth. Finally, in order to enhance the control performance in the transient region, a hybrid control strategy is proposed and evaluated.

제한기가 있는 비행제어시스템의 자동조종 알고리듬 이득 조정 (Autopilot gain adjustment for flight control system with limiter)

  • 최동균;유재종;김종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1864-1866
    • /
    • 1997
  • Uncertainties in the aerodynamic coefficients or time delay effects in implementing an autopilot algorithm can make a Flight Control System(FCS) unstable. When a FCS enters unstable state, the actuator or sensor limiters in FCS make the unstable system not diverge but be in the state of stable limit cycle. If an autopilot recognize the FCS to be in the stable limit cycle phenomenon, it woudl be better to adjust autopilot gains to stabilize the FCS. A novel method to stabilize a FCS using parameter estimation and maintenance of given phase margin is proposed. The method is applied to roll control loop and verified its performance.

  • PDF

롤 제어기 최적 초기화 기법 (Optimal Initialization Method for Roll Control Loop)

  • 황익호;박해리;김형석;김부민
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.167-171
    • /
    • 2019
  • This paper is to consider an issue on the way to initialize the integrator in PID roll controller. A performance index including the 2 norms of roll angle and control signal is introduced to regulate initial roll angle and roll rate in an efficient way. And then we suggest the optimal value to initiate the integrator in PID roll controller by minimizing the performance index. The proposed method shows its effectiveness by showing a demonstrative design example.

ER 밸브 작동기를 이용한 3자유도 폐회로 실린더 시스템의 위치제어 (Position Control of a 3 dof Closed-loop Cylinder System Using ER Valve Actuators)

  • 최승복;조명수
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.165-173
    • /
    • 2000
  • This Paper presents the position tracking control of a closed-loop cylinder system using electro-rheological(ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-of-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system. Sliding mode controllers are then designed fer these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF