• Title/Summary/Keyword: a regenerative power

Search Result 255, Processing Time 0.033 seconds

A Scheme for Adoption of Regenerative Inverter in DC Transit System (직류급전시스템 회생용 인버터 개발 및 실계통 적용 방안)

  • Kim, Joo-Rak;Han, Moon-Seob;Chang, Sang-Hoon;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1044-1045
    • /
    • 2008
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. EMU in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system will be increased. This paper present the adoption of developed inverter in commercial railway line and the test result procedure of developed inverter is presented.

  • PDF

Study on capacity calculation of regenerative inverter for DC electrified transit substation (직류전기철도변전소의 회생인버터 용량산정에 관한 연구)

  • Bae, C.H.;Han, M.S.;Kim, Y.G.;Jang, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1607-1609
    • /
    • 2005
  • This paper presents capability calculation methods for regenerative inverter in DC electrified transit system. The proposed method uses a train performance and power simulation tool to calculate the regenerative power generated in the DC substation and decide the capability of regenerative inverter. The capability of regenerative inverters for Seoul subway line 5, 6, 7, and 8 has been calculated.

  • PDF

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

Development of Regenerative Braking Control Algorithm for a 4WD Hybrid Electric Vehicle (4WD HEV의 회생제동 제어로직 개발)

  • Yeo Hoon;Kim Donghyun;Kim Talchol;Kim Chulsoo;Hwang Sungho;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.38-47
    • /
    • 2005
  • In this paper, a regenerative braking algorithm is proposed to make the maximum use of the regenerative braking energy for an independent front and rear motor drive parallel HEV. In the regenerative braking algorithm, the regenerative torque is determined by considering the motor capacity, motor efficiency, battery SOC, gear ratio, clutch state, engine speed and vehicle velocity. To implement the regenerative braking algorithm, HEV powertrain models including the internal combustion engine, electric motor, battery, manual transmission and the regenerative braking system are developed using MATLAB, and the regenerative braking performance is investigated by the simulator. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC, which recuperates 60 percent of the total braking energy while satisfying the design specification of the control logic. In addition, a control algorithm which limits the regenerative braking is suggested by considering the battery power capacity and dynamic response characteristics of the hydraulic control module.

Analysis of regenerative power substations, railway (도시철도 변전소 회생전력 분석에 관한 연구 - 서울도시철도 전력공급소 전력분석을 중심으로 -)

  • Lee, Jun-Sang;Park, Jong-Hun;Seo, Suk-Chul;Kim, Jin-Young;Kim, Gi-Chun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3117-3123
    • /
    • 2011
  • An Electric railway system has the characteristics. The train powered by substations generates regenerative power when it runs on railway of various slope. A regenerative braking is an ideal system on account of reducing mechanical braking as well as recycling the energy. In this study, Seoul Metropolitan Rapid Transit (substation) Precision analysis of the power of the electric car was carried out. Through this use of power substations, power supplies and trains through the regenerative power of the data analysis was performed utilizing research-based work.

  • PDF

The Regenerative Drive of Induction Servo Motor by the Flux Acceleration Method (자계벡터 가속법에 의한 유도형 서보전동기의 전력회생 구동)

  • Hong, Soon-Ill;Hong, Jeng-Pyo;Jung, Seoung-Hwan
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.77-80
    • /
    • 2006
  • This paper based on spiral vector, three phase induction motor is described a detailed modeling by a phase segment methode. Based on this model, A torque control and the equation of regenerative power for the induction motor drive, based on the field acceleration method(FAM), is presented. The speed control system is designed to be applied voltage source inverters that is easy the current type feedback of power regeneration for motor drive. The ability of shaving power to be measured power regeneration has been investigated in speed acceleration and reduction. And it is change of stator resistance that the voltage commands include error, the ripple of exited voltage and torque occur from the results. The experimental tests verify the performance of the proposed regenerative drive for FAM, proving that good behavior of the drive is achieved in the transient and steady-state operating conditions.

  • PDF

Development of Regeneration Invertor System for DC Electric Railway System (DC전철구간의 회생인버터시스템 개발)

  • Kim, Yong-Ki;Kim, Ju-Rak;Han, Moon-Seob;Kim, Jun-Gu;Yang, Young-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.505-511
    • /
    • 2008
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The purpose of this study was the development of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister. That is Developed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system.

  • PDF

The Effect of sGO Content in sPEEK/sGO Composite Membrane for Unitized Regenerative Fuel Cell (일체형 재생연료전지 적용을 위한 sGO 함량 변화에 따른 sGO/sPEEK 복합막의 특성 평가)

  • Jung, Ho-Young;Kim, Min-Woo;Lim, Ji-Hun;Choi, Jin H.;Roh, Sung-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.127-131
    • /
    • 2016
  • Polymer electrolyte membrane for unitized regenerative fuel cells requires high proton conductivity, high dimensional stability, low permeability, and low cost. However, DuPont's Nafion which is a commercial polymer electrolyte membrane has high permeability, high cost, and decreasing proton conductivity and dimensional stability over $80^{\circ}C$. To address these problems, sulfonated poly ether ether ketone (sPEEK) which is a low cost hydrocarbon polymer is selected as matrix polymer for the preparation of polymer electrolyte membrane. In addition, composite membrane with improved proton conductivity and dimensional stability is prepared by introducing sulfonated graphene oxide (sGO). The fundamental properties of polymer electrolyte membranes are analyzed by investigating membrane's water content, dimensional stability, proton conductivity, and morphology. The cell test is conducted to consider the possibility of application of sPEEK/sGO composite membrane for an unitized regenerative fuel cell.

A study of regenerative inverter system with capability of harmonic reduction (고조파 저감 능력을 가진 회생용 인버터 시스템 연구)

  • Choi, Chang-Youl;Bae, Chang-Hwan;Jang, Su-Jin;Song, Sang-Hun;Won, Cung-Yeun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.443-448
    • /
    • 2005
  • This paper proposed a regeneration inverter system, which can regenerate the excessive power form dc bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are include to ac current source. The regenerative inverter is operated as two modes. As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In the paper, a regeneration inverter used PWM DC/AC converter algorithm. And an active power filter used p-q theory. The simulation was composed as a prototype model[3kW]. Simulation results show that two algorithm can be used to real model[100kW]. Finally, the inverter was successfully operated as regeneration mode.

  • PDF

Performance Characteristics of a Combined Regenerative Ammonia-Water Based Power Generation Cycle Using LNG Cold Energy (LNG 냉열을 이용하는 암모니아-물 복합 재생 동력 사이클의 성능 특성)

  • Kim, Kyounghoon;Oh, Jaehyeong;Jeong, Youngguan
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • The ammonia-water based power generation cycle utilizing liquefied natural gas (LNG) as its heat sink has attracted much attention, since the ammonia-water cycle has many thermodynamic advantages in conversion of low-grade heat source in the form of sensible energy and LNG has a great cold energy. In this paper, we carry out thermodynamic performance analysis of a combined power generation cycle which is consisted of an ammonia-water regenerative Rankine cycle and LNG power generation cycle. LNG is able to condense the ammonia-water mixture at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the thermodynamic models, the effects of the key parameters such as source temperature, ammonia concentration and turbine inlet pressure on the characteristics of system are throughly investigated. The results show that the thermodynamic performance of the ammonia-water power generation cycle can be improved by the LNG cold energy and there exist an optimum ammonia concentration to reach the maximum system net work production.