• Title/Summary/Keyword: a real time simulation

Search Result 3,245, Processing Time 0.031 seconds

REAL-TIME SIMULATION OF A HIGH SPEED MULTIBODY TRACKED VEHICLE

  • YI K. S.;YI S.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.351-357
    • /
    • 2005
  • Development of a real-time simulation model for high-speed and multibody tracked vehicles is difficult because they involve hundreds of highly nonlinear equations. In the development of a reliable tracked vehicle model for real-time simulation, it is helpful to use an off-line tracked vehicle model developed by considering all the degrees of freedom of each element. This paper presents a step-by-step procedure for the development of a real-time simulation model based on the off-line tracked vehicle model. The road input data, Profile IV, is used for the real time simulation and simulation results are compared with vehicle test results obtained in the military test field. It is noted that the simulation results are quite close to the test results.

A Study on the Real Time Simulation of Continuous Dynamic System Using a Multiprocessor (Multiprocessor를 이용한 연속 동특성계의 실시간 시뮬레이션에 관한 연구)

  • 곽병철;양해원
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.559-567
    • /
    • 1987
  • In this paper, the real time simulation of continuous dynamic system was performed by general integration algorithms using multiprocessor. For the stable simulation, the relation between stability of integration method and integration step-size was investigated from the stability graph. As a typical illustration, the real-time digital simulation and the real-time hard-ware-in-the-loop simulation of flight control system were performed and reviewed. Moreover through the real-time simulation, the design verification and performace test of flight control system could be evaluated. The computer used for simulation is AD10, which is a very high-speed special-purpose computer designed specifically for a time-critical simulation of large and complex models of dynamic systems. The simulation validity is demonstrated by comparing hardware simulation results with software simulation results.

  • PDF

Development of Real-time Simulator for Vehicle Electric Brake System (차량 전자 제동 시스템을 위한 실시간 시뮬레이터 개발)

  • Cheon, Se Young;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper develops ABS braking real - time simulator to develop vehicle braking system by simulation. Recently, real-time simulation is widely used in the development of vehicles to decrease development time. In the field of electronic braking, real-time simulation is actively underway. In order to simulate electronic braking model in real time, a vehicle model, a hydraulic model, and a control S/W model are required. These models must be calculated in one platform. Therefore, in this paper, a vehicle model composed of CarSim and a hydraulic model composed of SimulationX using S/W in actual ABS controller was developed as a Simulink model base and linked with Matlab real time model. Using this real-time model, design effects of the electronic braking controller were simulated according to road surface condition to verify its operability.

Development of the Distributed Real-time Simulation System Based on HLA and DEVS (DEVS형식론을 적응한 HLA기반의 분산 실시간 시뮬레이션 시스템 개발)

  • Kim, Ho-Jeong;Lee, Jae-Hyun;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • Weapon systems composed of several subsystems execute various engagement missions in distributed combat environments in cooperation with a large number of subordinate/adjacent weapon systems as well as higher echelons through tactical data links. Such distributed weapon systems require distributed real-time simulation test beds to integrate and test their operational software, analyze their performance and effects of cooperated engagement, and validate their requirement specifications. These demands present significant challenges in terms of real-time constraints, time synchronization, complexity and development cost of an engagement simulation test bed, thus necessitate the use of high-performance distributed real-time simulation architectures, and modeling and simulation techniques. In this paper, in order to meet these demands, we presented a distributed real-time simulation system based on High Level Architecture(HLA) and Discrete Event System Specification(DEVS). We validated its performance by using it as a test bed for developing the Engagement Control System(ECS) of a surface-to-air missile system. The proposed technique can be employed to design a prototype or model of engagement-level distributed real-time simulation systems.

Real-time 3D Graphic Simulation of the Spent Fuel Rod Extracting Machine for Remote Monitoring (사용후핵연료봉 인출장치의 원격감시를 위한 실시간 3차원 그래픽 시뮬레이션)

  • 송태길;이종열;김성현;윤지섭
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.327-335
    • /
    • 2000
  • The spent fuel rod extracting machine is automatically operated in high radioactive environment, so high reliability of operation is required. In this paper, to enhance the reliability of this machine by providing a close monitoring capability. a real time graphic simulation method is suggested. This method utilizes conventional IGRIP (Interactive Graphics Robot Instruction Program) 3D graphic simulation tool to visualize and simulate the 3D graphic model of this machine. Also, the dedicated protocol is defined for transmission of the operational data of the machine. The real time graphic simulation is realized by developing the socket module between a graphic workstation and a machine control computer through the TCP/IP network and by dividing the 3D graphic simulation GSL(Graphic Simulation Language) program as a small sized sub routine. The suggested method is implemented while automatically operating the rod extracting machine. The result of implementation shows that the real time 3D graphic simulation is well synchronized with the actual machine according to the operational data.

  • PDF

Real Weather Condition Based Simulation of Stand-Alone Wind Power Generation Systems Using RTDS

  • Park, Min-Won;Han, Sang-Geun;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.146-152
    • /
    • 2004
  • Cost effective simulation schemes for Wind Power Generation Systems (WPGS) considering wind turbine types, generators and load capacities have been strongly investigated by researchers. As an alternative, a true weather condition based simulation method using a real-time digital simulator (RTDS) is experimented in this paper for the online real-time simulation of the WPGS. A stand-alone WPGS is, especially, simulated using the Simulation method for WPGS using Real Weather conditions (SWRW) in this work. The characteristic equation of a wind turbine is implemented in the RTDS and a RTDS model component that can be used to represent any type of wind turbine in the simulations is also established. The actual data related to weather conditions are interfaced directly to the RTDS for the purpose of online real-time simulation of the stand-alone WPGS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme. The results also signify that the cost effective verification of efficiency and stability for the WPGS is possible by the proposed real-time simulation method.

Development of a Real-Time Vehicle Dynamic Simulation Software (실시간 차량 동역학 시뮬레이션 S/W 개발)

  • Choi, G.J.;Lee, K.H.;Yoo, Y.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.30-37
    • /
    • 1995
  • In this research a real time vehicle dynamic simulation software, to be used on real time vehicle simulators, is developed using relative coordinates and suspension super-element concept. Accuracy of the software is verified through comparisons of simulation results with those of a commercial mechanical system dynamic analysis package. It is demonstrated that real time simulation on a workstation with a 15 D.O.F. vehicle model is possible.

  • PDF

A Real-Time Simulation Framework for Incremental Development of Cyber-Physical Systems (CPS의 점진적인 개발 과정을 지원하는 실시간 시뮬레이션 프레임워크)

  • Han, Jae-Hwa;We, Kyoung-Soo;Lee, Chang-Gun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.6
    • /
    • pp.311-321
    • /
    • 2012
  • When developing a CPS, since it is nature of CPS to interact with a physical system, CPS should be verified during its development process by real-time simulation supporting timely interactions between the simulator and existing implemented hardwares. Furthermore, when a part of a simulated system is implemented to real hardwares, i.e., incremental development, the simulator should aware changes of the simulated system and apply it automatically without manual description of the changes for effective development. For this, we suggest a real-time simulation framework including the concept of 'port' which abstracts communication details between the tasks, and a scheduling algorithm for guaranteeing 'real-time correctness' of the simulator.

Modeling and Control of a Doubly-Fed Induction Generator (DFIG) Wind Power Generation System for Real-time Simulations

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents a study of a DFIG wind power generation system for real-time simulations. For real-time simulations, the Real-Time Digital Simulator (RTDS) and its user friendly interface simulation software RSCAD are used. A 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. The stator-flux oriented vector control scheme is applied to the stator/rotor side converter control, and the back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for a realistic, reliable and accurate simulation analysis. Block diagrams, a mathematical presentation of the DFIG and a control scheme of the stator/rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

An interactive environment for simulation and real-time implementation of control systems

  • Koga, Masanobu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.336-339
    • /
    • 1995
  • An approach to efficient implementation of real-time control systems is presented in this paper. A compiler for translation of control algorithms is used in combination with a general program for real-time control. The compiler translates control algorithms written for the simulation in a design language to an implementation language. The translated algorithms are then automatically incorporated in the real-time control program.

  • PDF