• Title/Summary/Keyword: a raman scattering

Search Result 226, Processing Time 0.025 seconds

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.

Chemical Lithography by Surface-Induced Photoreaction of Nitro Compounds

  • Han, Sang-Woo;Lee, In-Hyung;Kim, Kwan
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • Searching for systems of self-assembled monolayers (SAMs) that can be used as templates for chemical lithography, we found that nitro groups on aromatic SAMs are selectively converted on Ag to amino groups by irradiation with a visible laser. 4-nitrobenzenethiol on Ag was thus converted to 4-aminobenzenethiol by irradiating it with an $Ar^+$ laser. This was evident from surface-enhanced Raman scattering (SERS) as well as from a coupling reaction forming amide bonds. The surface-induced photoreaction allowed us to prepare patterned binary monolayers on Ag that showed different chemical reactivities. Using the binary monolayers as a lithographic template, we induced site-specific chemical reactions, such as the selective growth of biominerals on either the nitro- or amine-terminated regions by adjusting the crystal-growth conditions. We also demonstrated that patterned, amine-terminated monolayers can be fabricated even on gold by using silver nanoparticles as photoreducing catalysts.

  • PDF

Investigation of Synthesis Yield and Diameter Distribution of Single-Walled Carbon Nanotubes Grown at Different Positions in a Horizontal CVD Chamber (수평형 CVD 장치에서 기판 위치에 따른 단일벽 탄소나노튜브의 합성 수율 및 직경 분포 고찰)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.357-363
    • /
    • 2019
  • We investigated a synthesis yield and diameter distribution of single-walled carbon nanotubes (SWNTs) with respect to the growth position in a horizontal chemical vapor deposition (CVD) chamber. Thin films and line-patterned Fe films (0.1 nm thickness) were prepared onto ST-cut quartz substrates as catalyst to compare the growth behavior. The line-patterned samples showed higher growth density and parallel alignment than those of the thin film catalyst samples. In addition, line density of the aligned SWNTs at central region of the chamber was 7.7 tubes/㎛ and increased to 13.9 tubes/㎛ at rear region of the CVD chamber. We expect that the enhanced amount of thermally decomposed feedstock gas may contribute to the growth yield enhancement at the rear region. In addition, the lamina flow in the chamber also contribute to the perfect alignment of the SWNTs based on the value of gas velocity, Reynold number, and Knudsen coefficient we employed.

Dispersion Behavior and Size Analysis of Thermally Purified High Pressure-high Temperature Synthesized Nanodiamond Particles

  • Kwon, Hansang;Park, Jehong;Leparoux, Marc
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • Synthesized monocrystalline nanodiamond (nD) particles are heat-treated at various temperatures to produce highly structured diamond crystals. The heat-treated nDs show different weight loss ratios during thermogravimetric analysis. The crystallinities of the heat-treated nDs are analyzed using Raman spectroscopy. The average particle sizes of the heat-treated nDs are measured by a dynamic light scattering (DLS) system and direct imaging observation methods. Moreover, individual dispersion behaviors of the heat-treated nD particles are investigated based on ultrasonic dispersion methods. The average particle sizes of the dispersed nDs according to the two different measurement methods show very similar size distributions. Thus, it is possible to produce highly crystallized nD powder particles by a heat-treatment process, and the nD particles are relatively easy to disperse individually without any dispersant. The heat-treated nDs can lead to potential applications such as in nanocomposites, quantum dots, and biomedical materials.

6H-SiC epitaxial growth and crystal structure analysis (6H-SiC 에피층 성장과 결정구조 해석)

  • Kook-Sang Park;Ky-Am Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.197-206
    • /
    • 1997
  • A SiC epilayer on the 6H-SiC crystal substrate was grown by chemical vapor deposition (CVD). The crystal structure of the SiC epilayer was investigated by using the X-ray diffraction patterns and the Roman scattering spectroscopy. The SiC epilayer on the 6H-SiC substrate was grown to be homoepilayer by CVD. In order to distinguish a certain SiC polytype mixed in the SiC crystal grown by the modified Lely method, we have calculated the X-ray diffraction intensities and Brags angles of the typical SiC crystal powders. By comparing the measured X-ray diffraction pattern with the calculated ones, it was identified that the SiC crystal grown by the modified Lely method was the 6H-SiC crystal mixed some 15R-SiC.

  • PDF

Measurement of OH radical spectrum in counterflow burner using degenerate four wave mixing (DFWM(degenerate four wave mixing)을 이용한 대향류버너 화염내의 OH 라디칼 스펙트럼 측정)

  • 이은성;한재원
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.142-149
    • /
    • 1996
  • In non-saturation region, we measured the degenerate four wave mixing spectra of $X^2\;{\Pi}(v=0){\to}A^2{\Sigma}^+(v'=0)$ transition for OH in counterflow burner, which exists transiently in combustion reaction. We used forward box type geometry for phase matching. Calculating the population of each rotational level from the line intensities of R$_1$band and comparing it with Boltzmann distributions, we could obtain the temperatures of the flame at several points. Corrected for the absorption of incident laser fields, the final temperatures coincided with those measured by coherent anti-Stokes Raman Scattering within error $\pm$60 K near 2000 K. We also measured the concentration distribution of OH radical and it was compared to that measured by laser induced fluorescence.

  • PDF

Luminescence Properties of Blue Light-emitting Diode Grown on Patterned Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han;Wang, Lei
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.358-363
    • /
    • 2017
  • In this study, we present a detailed investigation of luminescence properties of a blue light-emitting diode using InGaN/GaN (indium component is 17.43%) multiple quantum wells as the active region grown on patterned sapphire substrate by low-pressure metal-organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman scattering (RS) and photoluminescence (PL) measurements are employed to study the crystal quality, the threading dislocation density, surface morphology, residual strain existing in the active region and optical properties. We conclude that the crystalline quality and surface morphology can be greatly improved, the red-shift of peak wavelength is eliminated and the superior blue light LED can be obtained because the residual strain that existed in the active region can be relaxed when the LED is grown on patterned sapphire substrate (PSS). We discuss the mechanisms of growing on PSS to enhance the superior luminescence properties of blue light LED from the viewpoint of residual strain in the active region.

A Study on the Characteristics of 2-Dimensinal Molybdenum Disulfide Thin Films formed on Sapphire Substrates by DC Sputtering and Rapid Thermal Annealing (DC 스퍼터링 및 급속 열처리 공정을 이용한 사파이어 기판상에 형성된 2차원 황화몰리브덴 박막의 특성에 관한 연구)

  • Qi, Yuanrui;Ma, Sang Min;Jeon, Yongmin;Kwon, Sang Jik;Cho, Eou-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.105-109
    • /
    • 2022
  • For the realization of higher reliable transition metal dichalcogenide layer, molybdenum disulfide was formed on sapphire substrate by direct current sputtering and subsequent rapid thermal annealing process. Unlike RF sputtered MoS2 thin films, DC sputtered showed no irregular holes and protrusions after annealing process from scanning electron microscope images. From atomic force microscope results, it was possible to investigate that surface roughness of MoS2 thin films were more dependent on DC sputtering power then annealing temperature. On the other hand, the Raman scattering spectra showed the dependency of significant E12g and A1g peaks on annealing temperatures.

Facile Synthesis of CdTe Nanorods from the Growth of Te Nanorods

  • Xu, Weiwei;Niu, Jinzhong;Zheng, Shuang;Tian, Guimin;Wu, Xinghui;Cheng, Yongguang;Hu, Xiaoyang;Liu, Shuaishuai;Hao, Haoshan
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.185-190
    • /
    • 2017
  • One-dimensional CdTe nanorods (NRs) are obtained by the reaction of various Cd precursors with single crystalline Te nanorod templates, which are pre-synthesized from Te precursors by a simple and reproducible solvothermal method. Throughout the process, the diffraction intensity of different crystal facets of single crystalline Te NRs varied with reaction times. Finally, by alloying Cd ions along the axial direction of Te NRs, polycrystalline cubic phase CdTe NRs with diameters of 80-150 nm and length up to $1.2-2.4{\mu}m$ are obtained. The nucleation and growth processes of Te and CdTe NRs are discussed in details, and their properties are characterized by XRD, SEM, TEM, Raman scattering, and UV-vis absorption spectra. It was found that the key elements of synthesizing CdTe NRs such as reaction temperatures and Cd sources will strongly influence the final shape of CdTe NRs.

Structural and Optoelectronic Properties of SnO2 Nanowires

  • Lee, Jong-Soo;Sim, Sung-Kyu;Min, Byung-Don;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 2004
  • Structural and optoelectronic properties of as-synthesized SnO$_2$ nanowires were examined in this study. The SnO$_2$ nanowires were first synthesized by thermal evaporation of ball-milled SnO$_2$ powders in argon atmosphere without the presence of any catalysts, arid their structural properties are then investigated by X-ray diffraction, Raman scattering, scanning electron microscopy, and transmission electron microscopy. This investigation revealed that the synthesized SnO$_2$ nanowires are single-crystalline and that their growth direction is parallel to the [100] direction. In addition, photoresponse of a single SnO$_2$ nanowire was performed with light with above-gap energy, and different characteristics of photoresponses were obtained for the nanowire at ambient atmosphere and in vacuum. The photoresponse mechanism is briefly discussed in this paper.