• 제목/요약/키워드: a probe

검색결과 4,487건 처리시간 0.035초

P018 Comparison between Cutoff Probe and Langmuir Probe: Focused on Measurement Technique Error

  • 권준혁;김대웅;유신재;신용현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.235.1-235.1
    • /
    • 2014
  • Precise measurement of plasma parameters including density and temperature is the most essential part for understanding plasma characteristics. To persue more accurate measurement, it is very important to understand the intrinsic error of the measurement method. In this paper, we performed the plasma measurement with different method; langmuire probe and cutoff probe. Both measurement technology are known to be exactly correlate with etch other. We conducted the four set of same experiments process by diffrent persons to observe the intrinsic error based on measurement tools. As a result, the cutoff probe is relatively reliable then the Langmuir probe. This difference is analyzed to be intrinsic since it cames from the inevitable error such as manufacturing of probe tip. From this study, we sure that it is good decision to choose cutoff probe as repeatable measurement independent with intrinsic human factor.

  • PDF

A Novel Transmission line model of Cutoff Probe for precise measurement of high density plasma

  • 김시준;이장재;김광기;이바다;염희중;이영석;김대웅;김정형;유신재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.185.1-185.1
    • /
    • 2016
  • Cutoff probe, diagnostics instrument for plasma density, have been received an extensive attention due to simple, robust and lowest assumption. Although the cutoff probe has a long history, physical model is limited in low density plasma. For that reason, we propose a novel transmission line model of cutoff probe for precise measurement of high density plasma. In addition simplified circuit model can be obtained from transmission line model. It can explain simply physics of cutoff probe in high density plasma.

  • PDF

반도체 Probe 공정에서의 생산 능력 계획 (Capacity Planning and Control of Probe Process in Semiconductor Manufacturing)

  • 정봉주;이영훈
    • 산업공학
    • /
    • 제10권1호
    • /
    • pp.15-22
    • /
    • 1997
  • In semiconductor manufacturing, the probe process between fabrication and assembly process is constrained mostly by the equipment capacity because most products pass through the similar procedures. The probe process is usually performed in a batch mode with relatively short cycle times. The capability of the probe process can be determined by the optimal combination of the equipments and the products. A probe line usually has several types of equipment with different capacity. In this study, the probe line is modeled in terms of capacity to give the efficient planning and control procedure. For the practical usage, the hierarchical capacity planning procedure is used. First, a monthly capacity plan is made to meet the monthly production plan of each product. Secondly, the daily capacity planning is performed by considering the monthly capacity plan and the daily fabrication output. Simple heuristic algorithms for daily capacity planning are developed and some experimental results are shown.

  • PDF

Comparative Study on Microwave Probes for Plasma Density Measurement by FDTD Simulations

  • Kim, D.W.;You, S.J.;Na, B.K.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.218.1-218.1
    • /
    • 2014
  • In order to measure the absolute plasma density, various probes are proposed and investigated and microwave probes are widely used for its advantages (Insensitivity to thin non-conducting material deposited by processing plasmas, High reliability, Simple process for determination of plasma density, no complicate assumptions and so forth). There are representative microwave probes such as the cutoff probe, the hairpin probe, the impedance probe, the absorption probe and the plasma transmission probe. These probes utilize the microwave interactions with the plasma-sheath and inserted structure (probe), but frequency range used by each probe and specific mechanisms for determining the plasma density for each probe are different. In the recent studies, behaviors of each microwave probe with respect to the plasma parameters of the plasma density, the pressure (the collision frequency), and the sheath width is abundant and reasonably investigated, whereas relative diagnostic characteristics of the probes by a comparative study is insufficient in spite of importance for comprehensive applications of the probes. However, experimental comparative study suffers from spatially different plasma characteristics in the same discharge chamber, a low-reproducibility of ignited plasma for an uncertainty in external discharge parameters (the power, the pressure, the flow rate and so forth), impossibility of independently control of the density, the pressure, and the sheath width as well as expensive and complicate experimental setup. In this paper, various microwave probes are simulated by finite-different time-domain simulation and the error between the input plasma density in FDTD simulations and the measured that by the unique microwave spectrums of each probe is obtained under possible conditions of plasma density, pressure, and sheath width for general low-temperature plasmas. This result shows that the each probe has an optimum applicable plasma condition and reliability of plasma density measurement using the microwave probes can be improved by the complementary use of each probe.

  • PDF

An improvement of real-time polymerase chain reaction system based on probe modification is required for accurate detection of African swine fever virus in clinical samples in Vietnam

  • Tran, Ha Thi Thanh;Dang, Anh Kieu;Ly, Duc Viet;Vu, Hao Thi;Hoang, Tuan Van;Nguyen, Chinh Thi;Chu, Nhu Thi;Nguyen, Vinh The;Nguyen, Huyen Thi;Truong, Anh Duc;Pham, Ngoc Thi;Dang, Hoang Vu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권10호
    • /
    • pp.1683-1690
    • /
    • 2020
  • Objective: The rapid and reliable detection of the African swine fever virus (ASFV) plays an important role in emergency control and preventive measures of ASF. Some methods have been recommended by FAO/OIE to detect ASFV in clinical samples, including realtime polymerase chain reaction (PCR). However, mismatches in primer and probe binding regions may cause a false-negative result. Here, a slight modification in probe sequence has been conducted to improve the qualification of real-time PCR based on World Organization for Animal Health (OIE) protocol for accurate detection of ASFV in field samples in Vietnam. Methods: Seven positive confirmed samples (four samples have no mismatch, and three samples contained one mutation in probe binding sites) were used to establish novel real-time PCR with slightly modified probe (Y = C or T) in comparison with original probe recommended by OIE. Results: Both real-time PCRs using the OIE-recommended probe and novel modified probe can detect ASFV in clinical samples without mismatch in probe binding site. A high correlation of cycle quantification (Cq) values was observed in which Cq values obtained from both probes arranged from 22 to 25, suggesting that modified probe sequence does not impede the qualification of real-time PCR to detect ASFV in clinical samples. However, the samples with one mutation in probe binding sites were ASFV negative with OIE recommended probe but positive with our modified probe (Cq value ranked between 33.12-35.78). Conclusion: We demonstrated for the first time that a mismatch in probe binding regions caused a false negative result by OIE recommended real-time PCR, and a slightly modified probe is required to enhance the sensitivity and obtain an ASF accurate diagnosis in field samples in Vietnam.

Reliability and validity of rehabilitative ultrasound images obtained using a hands-free fixed probe in measuring the muscle structures of the tibialis anterior and the gastrocnemius

  • Choi, Mun-Sang;Shin, Jang-Hoon;Park, Hye-Kang;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권4호
    • /
    • pp.194-201
    • /
    • 2019
  • Objective: This study aimed to investigate the reliability and validity of muscle thickness (MT) and pennation angle (PA) measurements of the ankle muscle, including the tibialis anterior (TA) and the medial gastrocnemius (MGCM), using a hands-free fixed probe and to compare it with the conventional linear probe. Design: Observational inter-rater reliability study. Methods: Thirty-three healthy subjects (20 male, 13 female) were included. In all subjects, ultrasound images were acquired from the TA and MGCM using a hands-free fixed probe and a conventional linear probe in random sequence by two examiners at two time-points within a 7-day interval. MT and PA were calculated on the taken images. Intra-class correlation coefficients (ICC), 95% confidence intervals, standard error of measurement and the Pearson's correlation coefficient were used to estimate reliability and validity. And also, Bland-Altman plots were generated for a visual representation of MT and PA at the TA and MGCM. Results: The ICC for all intra-rater reliability was 0.943 to 0.995 and that for all inter-rater reliability was 0.928 to 0.993, indicating excellent reliability. A significantly high correlation was observed between MT and PA at the TA and MGCM with use of the hands-free fixed probe and the conventional linear probe (r>0.938; p<0.001). Conclusions: The hands-free fixed probe provided excellent images for measurement of the MT and PA of the TA and MGCM and is a useful device for making clinical measurements of muscle structure without grasping of the probe.

연소실 초기온도 변화에 따른 순간열유속에 관한 연구 (A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber)

  • 이치우
    • 한국산업융합학회 논문집
    • /
    • 제6권3호
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

Near-field Noise-emission Modeling for Monitoring Multimedia Operations in Mobile Devices

  • Song, Eakhwan;Choi, Jieun;Lee, Young-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.440-444
    • /
    • 2016
  • In this paper, an equivalent circuit model for near-field noise emission is proposed to implement a multimedia operation-monitoring system for mobile devices. The proposed model includes a magnetic field probe that captures noise emissions from multimedia components, and a transfer function for near-field noise coupling from a transmission line source to a magnetic field probe. The proposed model was empirically verified with transfer function measurements of near-field noise emissions from 10 kHz to 500 MHz. With the proposed model, a magnetic field probe was optimally designed for noise measurement on a camera module and an audio codec in a mobile device. It was demonstrated that the probe successfully captured the near-field noise emissions, depending on the operating conditions of the multimedia components, with enhanced sensitivity from a conventional reference probe.

정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구 (A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

근접장 광학계의 광학적 및 기계적 특성 분석과 근접장 간격제어 (Optical and Mechanical Characteristics of NF System and NF Gap Control)

  • 오형렬;이준희;권대갑;김수경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1528-1532
    • /
    • 2000
  • The conventional optics and near field optics are compared numerically in the view points of the spot size and propagation characteristics. The decaying characteristics of near field light require the optics to access the object within several tens of nanometers. Therefore the gap control is one of the main issues in the near field optics area. In this paper the gap control is done by using the shear force of the NF(Near Field) probe and the characteristics are examined. The probe is modeled as a 2'nd order mass-spring-damper system driven by a harmonic force. The primary cause of the decrease in vibration amplitude is due to the damping force - shear force - between the surface and the probe. Using the model, damping constant and resonance frequency of the probe is calculated as a function of probe-sample distance. Detecting the amplitude and phase shift of the NF probe attached to the high Q-factor piezoelectric tuning fork, we can control the position of the NF probe about 0 to 50nm above the sample. The feedback signal to regulate the probe-sample distance can be used independently for surface topography imaging. 3-D view of the shear force image of a testing sample with the period of $1{\mu}m$ will be shown.

  • PDF