• Title/Summary/Keyword: a probe

Search Result 4,497, Processing Time 0.032 seconds

Measurement of the Three-Dimensional Flow Fields of a Gun-Type Gas Burner Using Triple Hot-Wire Probe (3중 열선 프로브를 이용한 Gun식 가스버너의 3차원 유동장 측정)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.23-31
    • /
    • 2006
  • Mean velocities and turbulent characteristics in the three-dimensional flow fields of a gun-type gas burner were measured by using triple hot-wire probe (T-probe) in order to compare them with the results already presented by X-type hot-wire probe (X-probe). Vectors obtained by the measurement of two kinds of probes in the horizontal plane and in the cross section respectively show more or less difference in magnitude each other, but comparatively similar shape in overall distribution. Axial mean velocity component along the centerline shows that the value by T-probe is about ten times smaller than that by X-probe above the range of X/R=3. Also, the axial component of turbulent intensity along the centerline appears the biggest difference between the two probes. Moreover, axial mean velocity component, axial turbulent intensity component and rotational along the Y-directional distance show a big difference between slits and swirl vanes. On the whole, the values by T-probe appear smaller than those by X-probe.

  • PDF

Development of a Laboratory-based Calibration System for 5-Hole Probes (5공 프로브 실험실용 교정 시스템 개발)

  • Kim, Changmin;Baek, Seungchan;Ji, Changeun;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.122-128
    • /
    • 2020
  • In the field of experimental fluid dynamics, the 5-hole probe is one of the most widely used tools to measure flow velocity and pressure. We hereby describe the development of an inexpensive laboratory-based flow calibration system for 5-hole probes. The system is applied to a custom L-shaped probe, and the probe performance is compared against a standard commercial probe in a custom wind tunnel. The setup allows rotation of the probe around the yaw and pitch axes. Static and total pressure values are calculated, and then calibration maps are constructed based on the yaw and pitch angles. Using these maps, errors of the custom probe are found to be ±5% for velocity magnitude and ±3° for direction, compared to the commercial probe, when both pitch and yaw angles are within 40°.

Design and Fabrication of Dual Tip Si3N4 Probe for Dip-pen Nanolithograpy (Dip-pen nanolithography를 위한 이중 팁을 가진 질화규소 프로브의 설계 및 제조)

  • Kim, Kyung Ho;Han, Yoonsoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.362-367
    • /
    • 2014
  • We report the design, fabrication of a $Si_3N_4$ probe and calculation of its mechanical properties for DPN(dip pen nanolithography), which consists of dual tips. Concept of dual tip probe is to employ individual tips on probe as either an AFM tip for imaging or a writing tip for nano patterning. For this, the dual tip probe is fabricated using low residual stress $Si_3N_4$ material with LPCVD deposition and MEMS fabrication process. On the basis of FEM analysis we show that the functionality of dual tip probe for imaging is dependent on the dimensions of dual tip probe, and high ratio of widths of beam areas is preferred to minimize curvature variation on probe.

Measurement and Analysis of Ground Impedance according to Arrangement of Auxiliary Probe around Ground Grid (접지 그리드에서의 보조전극 배치에 따른 접지임피던스 측정 및 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.46-50
    • /
    • 2015
  • This paper describes the measurement and analysis of ground impedance according to arrangement of auxiliary probe around ground grid using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method involves passing a current between a ground electrode and a current probe, and then measuring the voltage between a ground electrode and a potential probe. To minimize interelectrode influences due to mutual resistances, the current probe is a generally placed at a substantial distance from the ground electrode under test. In order to analyze the effects of ground impedance due to the arrangement of auxiliary probe and frequency, ground impedances were measured in case that the arrangements of auxiliary probe were straight line, perpendicular line, and horizontal line. The distance of current probe was located from 10[m] to 200[m] and the measuring frequency was ranged from 55[Hz] to 513[Hz]. As a consequence, the ground impedance increases with increasing the distance from the ground electrode to the point to be tested, but the ground impedance decreases with increasing the frequency.

A Study of Development for Contact CMM Probe using Three-Component Force Sensor (3 분력 힘 센서를 이용한 CMM 용 접촉식 프로브의 개발에 관한 연구)

  • 송광석;권기환;박재준;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.101-107
    • /
    • 2003
  • A new mechanical probe for 3-D feature measurement on coordinate measuring machines (CMMs) is presented. The probe is composed of the contact stylus and the three-component force sensor. With the stylus mounted on the force sensor, the probe can not only measure 3-D features, but also detect contact force acting on the stylus tip. Furthermore, the probing direction and the actual contact position can be determined by the relationship among three components of contact force to be detected. In this paper, transformation matrix representing the relationship between the external force acting on the stylus tip and the output voltages of measurement gauges is derived and calibrated. The prototype of probe is developed and its availability is investigated through the experimental setup for calibration test of the probe. A series of experimental results show that the proposed probe can be an effective means of improving the accuracy of touch probing on CMM.

A Cutoff Probe for the Measurement of High Density Plasma

  • Yu, Gwang-Ho;Na, Byeong-Geun;Kim, Dae-Ung;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.148-148
    • /
    • 2012
  • A cutoff probe is the novel diagnostic method to get the absolute plasma density with simple system and less assumption. However, high density of ion flux from plasma on probe tip can make the error of plasma density measurement because the dielectric material of probe tip can be damaged by ion flux. We proposed a shielded cutoff probe using the ceramic tube for protection from ion flux. The ceramic tube on probe tip can intercept the ion flux from plasma. The transmitted spectrum using the shielded cutoff probe is good agreement with E/M wave simulation result (CST Microwave Studio) and previous circuit simulation of cutoff probe [1]. From the analysis of the measured transmitted spectrum base on the circuit modeling, the parallel resonance frequency is same as the unshielded cutoff probe case. The obtained results of electron density is presented and discussed in wide range of experimental conditions, together with comparison result with previous cutoff method.

  • PDF

A Study on Applying Array Probe for Steam Generator Tube Inspection (배열형 탐촉자를 이용한 증기발생기 세관 검사 적용성 검토)

  • Kim, In Chul;Cheon, Keun Young;Lee, Young Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Steam Generator(SG) tube is an important component of Nuclear Power Plant(NPP), which comprises of the pressure boundary of primary system. The integrity of SG tube has been confirmed by the eddy current test every outage. In Korea, Bobbin probe and MRPC probe have been generally used for the eddy current test. Meanwhile the usage of Array probe has gradually increased in U.S., Japan and other countries. In this study, we investigated the defect detection capability of the Array probe through its preliminary application to SG tube inspection. The Array probe has the equivalent capability in the defect detection and sizing as the conventional methods. Thus it is desirable that the Array probe is generally applied to SG tube inspection in the domestic NPPs.

  • PDF

Development of an Optical Waveguide Loss Measuring System using an Rectangular Glass Probe

  • Choi, Young-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2001
  • The use of a glass-plate probe of rectangular shape is proposed for the measurement of transmission loss in optical waveguides. The light-collecting window is of a thin, rectangular shape and is perpendicular to the light streak, while the conventional fiberglass probe has a small circular face. This transversely elongated form results in a grate improvement of mechanical tolerance for the probe movement in the vortical as well as in the transverse direction. A theoretical investigation also presents a reasonable agreement with the experiments.

  • PDF

Numerical Modeling of Perturbation Effects of Electrostatic Probe into 2D ICP(inductively coupled plasma) (2D-ICP(inductively coupled plasma)에서 정전 탐침 삽입 시의 플라즈마 수치 계산)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • Numerical modeling is used to investigate the perturbation of a single Langmuir probe (0.2 mm diameter shielded with 6 mm insulator) inserted along the center axis of a cylindrical inductively coupled plasma chamber filled with Ar at 10 mTorr and driven by 13 MHz. The probe was driven by a sine wave. When the probe tip is close to a substrate by 24.5 mm, the probe characteristics was unperturbed. At 10 mm above the substrate, the time averaged electric potential distribution around the tip was severly distorted making a normal probe analysis impossible.