• Title/Summary/Keyword: a path planning

Search Result 1,070, Processing Time 0.022 seconds

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

Hybrid Path Planning of Multi-Robots for Path Deviation Prevention (군집로봇의 경로이탈 방지를 위한 하이브리드 경로계획 기법)

  • Wee, Sung-Gil;Kim, Yoon-Gu;Choi, Jung-Won;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.416-422
    • /
    • 2013
  • This paper suggests a hybrid path planning method of multi-robots, where a path deviation prevention for maintaining a specific formation is implemented by using repulsive function, $A^*$ algorithm and UKF (Unscented Kalman Filter). The repulsive function in potential field method is used to avoid collision among robots and obstacles. $A^*$ algorithm helps the robots to find optimal path. In addition, error estimation based on UKF guarantees small path deviation of each robot during navigation. The simulation results show that the swarm robots with designated formation successfully avoid obstacles and return to the assigned formation effectively.

Multi-objective path planning for mobile robot in nuclear accident environment based on improved ant colony optimization with modified A*

  • De Zhang;Run Luo;Ye-bo Yin;Shu-liang Zou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1838-1854
    • /
    • 2023
  • This paper presents a hybrid algorithm to solve the multi-objective path planning (MOPP) problem for mobile robots in a static nuclear accident environment. The proposed algorithm mimics a real nuclear accident site by modeling the environment with a two-layer cost grid map based on geometric modeling and Monte Carlo calculations. The proposed algorithm consists of two steps. The first step optimizes a path by the hybridization of improved ant colony optimization algorithm-modified A* (IACO-A*) that minimizes path length, cumulative radiation dose and energy consumption. The second module is the high radiation dose rate avoidance strategy integrated with the IACO-A* algorithm, which will work when the mobile robots sense the lethal radiation dose rate, avoiding radioactive sources with high dose levels. Simulations have been performed under environments of different complexity to evaluate the efficiency of the proposed algorithm, and the results show that IACO-A* has better path quality than ACO and IACO. In addition, a study comparing the proposed IACO-A* algorithm and recent path planning (PP) methods in three scenarios has been performed. The simulation results show that the proposed IACO-A* IACO-A* algorithm is obviously superior in terms of stability and minimization the total cost of MOPP.

Parallelization of Probabilistic RoadMap for Generating UAV Path on a DTED Map (DTED 맵에서 무인기 경로 생성을 위한 Probabilistic RoadMap 병렬화)

  • Noh, Geemoon;Park, Jihoon;Min, Chanoh;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.157-164
    • /
    • 2022
  • In this paper, we describe how to implement the mountainous terrain, radar, and air defense network for UAV path planning in a 3-D environment, and perform path planning and re-planning using the PRM algorithm, a sampling-based path planning algorithm. In the case of the original PRM algorithm, the calculation to check whether there is an obstacle between the nodes is performed 1:1 between nodes and is performed continuously, so the amount of calculation is greatly affected by the number of nodes or the linked distance between nodes. To improve this part, the proposed LineGridMask method simplifies the method of checking whether obstacles exist, and reduces the calculation time of the path planning through parallelization. Finally, comparing performance with existing PRM algorithms confirmed that computational time was reduced by up to 88% in path planning and up to 94% in re-planning.

Fuzzy-based Path Planning for Multiple Mobile Robots in Unknown Dynamic Environment

  • Zhao, Ran;Lee, Hong-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.918-925
    • /
    • 2017
  • This paper presents a path planning problem for multi-robot system in the environment with dynamic obstacles. In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly, a navigation method based on fuzzy logic controllers has been developed by using proximity sensors. There are two kinds of fuzzy controllers developed in this work, one is used for obstacle avoidance and the other is used for orientation to the target. Both static and dynamic obstacles are included in the environment and the dynamic obstacles are defined with no type of restriction of direction and velocity. Here, the environment is unknown for all the robots and the robots should detect the surrounding information only by the sensors installed on their bodies. The simulation results show that the proposed method has a positive effectiveness for the path planning problem.

Study on Path Planning Algorithms for Unmanned Agricultural Helicopters in Complex Environment

  • Moon, Sang-Woo;Shim, David Hyun-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.1-11
    • /
    • 2009
  • In this paper, two algorithms to solve the path planning problem with constraints from obstacles are presented. One proposed Algorithm is "Grid point-based path planning". The first step of this algorithm is to set points which can be the waypoints around the field. These points can be located inside or outside of the field or the obstacles. Therefore, we should determine whether those points are located in the field or not. Using the equations of boundary lines for a region that we are interested in is an effective approach to handle. The other algorithm is based on the boundary lines of the agricultural field, and the concept of this algorithm is well known as "boustrophedon method". These proposed algorithms are simple but powerful for complex cases since it can generate a plausible path for the complex shape which cannot be represented by using geometrical approaches efficiently and for the case that some obstacles or forbidden regions are located on the field by using a skill of discriminants about set points. As will be presented, this proposed algorithm could exhibit a reasonable accuracy to perform an agricultural mission.

Minimal Turning Path Planning for Cleaning Robots Employing Flow Networks (Flow Network을 이용한 청소로봇의 최소방향전환 경로계획)

  • Nam Sang-Hyun;Moon Seungbin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.789-794
    • /
    • 2005
  • This paper describes an algorithm for minimal turning complete coverage Path planning for cleaning robots. This algorithm divides the whole cleaning area by cellular decomposition, and then provides the path planning among the cells employing a flow network. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The minimal turning of the robots is directly related to the faster motion and energy saving. The proposed algorithm is compared with previous approaches in simulation and the result shows the validity of the algorithm.

Development of Optimal Path Planning for Automated Excavator (자동화 굴삭기 최적경로 생성 알고리즘 개발)

  • Shin, Jin-Ok;Park, Hyong-Ju;Lee, Sang-Hak;Hong, Dae-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.78-83
    • /
    • 2007
  • The paper focuses on the establishment of optimized bucket path planning and trajectory control designated for force-reflecting backhoe reacting to excavation environment, such as potential obstacles and ground characteristics. The developed path planning method can be used for precise bucket control, and more importantly for obstacle avoidance which is directly related to safety issues. The platform of this research was based on conventional papers regarding the kinematic model of excavator. Jacobian matrix was constructed to find optimal joint angles and rotation angles of bucket from position and orientation data of excavator. By applying Newton-Raphson method optimal joint angles and bucket orientation were derived simultaneously in the way of minimizing positional errors of excavator. The model presented in this paper was intended to function as a cornerstone to build complete and advanced path planning of excavator by implementing soil mechanics and further study of excavator dynamics together.

  • PDF

Dynamic Path Planning for Autonomous Mobile Robots (자율이동로봇을 위한 동적 경로 계획 방법)

  • Yoon, Hee-Sang;You, Jin-Oh;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.392-398
    • /
    • 2008
  • We propose a new path planning method for autonomous mobile robots. To maximize the utility of mobile robots, the collision-free shortest path should be generated by on-line computation. In this paper, we develop an effective and practical method to generate a good solution by lower computation time. The initial path is obtained from skeleton graph by Dijkstra's algorithm. Then the path is improved by changing the graph and path dynamically. We apply the dynamic programming algorithm into the stage of improvement. Simulation results are presented to verify the performance of the proposed method.

Planning of Safe and Efficient Local Path based on Path Prediction Using a RGB-D Sensor (RGB-D센서 기반의 경로 예측을 적용한 안전하고 효율적인 지역경로 계획)

  • Moon, Ji-Young;Chae, Hee-Won;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • Obstacle avoidance is one of the most important parts of autonomous mobile robot. In this study, we proposed safe and efficient local path planning of robot for obstacle avoidance. The proposed method detects and tracks obstacles using the 3D depth information of an RGB-D sensor for path prediction. Based on the tracked information of obstacles, the paths of the obstacles are predicted with probability circle-based spatial search (PCSS) method and Gaussian modeling is performed to reduce uncertainty and to create the cost function of caution. The possibility of collision with the robot is considered through the predicted path of the obstacles, and a local path is generated. This enables safe and efficient navigation of the robot. The results in various experiments show that the proposed method enables robots to navigate safely and effectively.