• Title/Summary/Keyword: a optimum dimension

Search Result 130, Processing Time 0.022 seconds

Disaster Assessment and Mitigation Planning: A Humanitarian Logistics Based Approach

  • Das, Kanchan;Lashkari, R.S.;Biswas, N.
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.336-350
    • /
    • 2013
  • This paper proposes a mathematical modeling-based approach for assessing disaster effects and selecting suitable mitigation alternatives to provide humanitarian relief (HR) supplies, shelter, rescue services, and long-term services after a disaster event. Mitigation steps, such as arrangement of shelter and providing HR items (food, water, medicine, etc.) are the immediate requirements after a disaster. Since governments and non-governmental organizations (NGOs) providing humanitarian aid need to know the requirements of relief supplies and resources for collecting relief supplies, organizing and initiating mitigation steps, a quick assessment of the requirements is the precondition for effective disaster management. Based on satellite images from weather forecasting channels, an area/dimension of the disaster-affected zones and the extent of the overall damage may often be obtained. The proposed approach then estimates the requirements for HR supplies, supporting resources, and rescue services using the census and other government data. It then determines reliable transportation routes, optimum collection and distribution centers, alternatives for resource support, rescue services, and long-term help needed for the disaster-affected zones. A numerical example illustrates the applicability of the model in disaster mitigation planning.

A Study on Inverse Problem of Materials Forming Process using Optimization Technique and Distributed Computing (최적화 기법과 분산 컴퓨팅을 이용한 재료 성형공정의 역문제에 관한 연구)

  • Choi, Joo-Ho;Oh, Dong-Gil;Ha, Duk-Sik;Kim, Jun-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.632-639
    • /
    • 2004
  • In this paper, an inverse problem of glass forming process is studied to determine a number of unknown heat transfer coefficients which are imposed as boundary conditions. An analysis program for transient heat conduction of axi-symmetric dimension is developed to simulate the forming and cooling process. The analysis is repeated until it attains periodic state, which requires at least 30 cycles of iteration. Measurements are made for the temperatures at several available time and positions of glass and moulds in operation. Heat removal by the cooling water from the plunger is also recorded. An optimization problem is formulated to determine heat transfer coefficients which minimize the difference between the measured data and analysis results. Significant time savings are achieved in finite difference based sensitivity computation during the optimization by employing distributed computing technique. The analysis results by the optimum heat transfer coefficients are found to agree well with the measured data.

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Characteristics of HTS Tube Depending on Chemical Compositions

  • Jung, Seung-Ho;Jang, Guneik
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.27-30
    • /
    • 2003
  • The Bi2212 based HTS tubes with 4 different compositions, Bi:Sr:Ca:Cu = 2.0:2.0:1.0:2.0, 2.1:2.0:1.0:2.0,2.2:1.8:1.0:2.0 and 2.2:1.8.1.0.2:2 with 10% of SrSO$_4$ were studied. For tube fabrication the optimum range of melt temperatures and preheating temperature and time for mold were 105$0^{\circ}C$~110$0^{\circ}C$ and 55$0^{\circ}C$ for 30min respectively. The mold rotating speed was 1000rpm. Typical tube dimension was 30/24mm in outside/inside diameter and 60mm in length. A tube was annealed at 84$0^{\circ}C$ for 40 hours in oxygen atmosphere. The plate like grains more than 20${\mu}{\textrm}{m}$ were well developed along the rotating direction of mold regardless of initial chemical compositions. The specimen with Bi2212 composition exhibited $T_c$ of 83K while the specimen with other compositions are lower than 60K. The measured $I_c and J_c$ at 77K(B = 0T) in Bi2212 composition were about 80A and 266A/$\textrm{cm}^2$.

Analysis of Flow Characteristics of Multilayer Type Piezo Valve (적층형 압전밸브의 유동특성 해석)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.946-949
    • /
    • 2003
  • This paper reports on the fluid flow simulation results of a multilayer type piezoelectric valve. The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed type using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a MLCA(Multilayer Type Ceramic Actuator). It is confirmed that the complete laminar flow and the lowest flow leakage are strongly depend on the valve seat geometry. In addition, turbulent flow was occurs in valve outlet according to increase seat dimension, height and inlet pressure. From this, we was deducts the optimum geometry of the valve seat and diaphragm deflection that have an great influence fluid flow in valve. Thus, it is expected that our simulation results would be apply for piezoelectric applications such as valve and pump, fluidic control systems.

  • PDF

A Study of the Applicability of Cross-Section Method for Cut-Slope Stability Analysis (개착사면의 안정성 해석을 위한 횡단면 기법의 활용성 고찰)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Lee, Guen-Ho;Cho, Kye-Seong;Lee, Sang-Bae
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • Stability of cut-slope, the orientation and dimension of which are gradually changed, has been analyzed by employing the cross-section method capable of comprehensibly considering the lithological, structural and mechanical characteristics of slope rock. Lithological fragility is investigated by inspecting the drilled core logs and BIPS image has been taken to delineate the rock structure. Engineering properties of drilled-core including the joint shear strength have been also measured. Potential failure modes of cut-slope and failure-induced joints are identified by performing the stereographic projection analysis. Traces of potential failure-induced joints are drawn on the cross-section which depicts the excavated geometry of cut-slope. Considering the distribution of potential plane failure-induced joint traces blocks of plane failure mode are hypothetically formed. The stabilities and required reinforcements of plane failure blocks located at the different excavation depth have been calculated to confirm the applicability of the cross-section method for the optimum cut-slope design.

A study on the fabrication of Y-branch for optical power distribution and its coupling properties with optical fiber (광분배를 위한 Y-branch 제작과 광파이버와의 결합특성에 관한 연구)

  • 김상덕;박수봉;윤중현;이재규;김종빈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3277-3285
    • /
    • 1996
  • In this paper, w designed an opical power distribution device for application to an optical switching and an optical subscriber loop. We fabricated PSG thin film by LPCVD. Based on the measured index of fabricted thin film, rib-type waveguide was transformed to two-dimension by the effective index method and we simulated dispersion property to find asingle-mode condition. We found that the optimum design parameters of rib-type waveguide are:cladding layer of 3.mu.m, core layer of 3.mu.m, buffer layer of 10.mu.m, and core width of 4.mu.m. Each side of the guiding region was etched down to 4.mu.m to shape the core. We used these optimum parameters of the rib-type waveguide with branching angle of 0.5.deg. and simulted the Y-branch waveguide by the BPM simulation. Numerical loss in branching area was claculated to be 0.1581dB and equal to the total loss of the Y-branch. The loss of the fabricated Y-branch waveguide on PSG film ws 1.6dB at .lambda.=1.3.mu.m before annealing but was 1.2dB after annealing at 1000.deg. C for 10 minutes. Consequently, the loss of branching area from 3000.mu.m to 6000.mu.m in the z-direction was 0.8dB, and single-mode propagation was confirmed by measuring the near field pattern. For coupling the fabricated Y-branch waveguide with an optical fiber, we fabricated V-groove which was used as the upholder of optical fiber. An etching angle was 54.deg. and the width and depth of guiding groove was 150.mu.m, 70.mu.m, respectively. The optical fiber is inserted onto V-groove. Both the Y-branch and V-groove were connected through the index matching oil. Coupling loss after connecting Y-branch and the optical fiber on V-groove was 0.34dB and that after injecting index mateching oil was 0.14dB.

  • PDF

The fabrication and characterization of hard rock cutting diamond saw (석재가공용 다이아몬드 톱의 제조 및 특성)

  • Lee Hyun-Woo;Jeon Woo-yong;Lee Oh-yeon;Seol Kyeong-won
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.412-420
    • /
    • 2004
  • The purpose of the present study is to determine an optimum composition using cheaper powders keeping with high performance of hard rock cutting diamond saw blade. With 50Fe-20(Cu . Sn)-30Co specimen, a part of Co was replaced by Ni(5%, 10%, and 15%, respectively). These specimens were hot pressed and sintered for predetermined time at various temperature. Sintering is performed by two different methods of temperature controlled method and specimen dimension controlled method. In order to determine the property of the sintered diamond saw blade, 3 point bending tester, X-ray diffractometer, and SEM were used. As the Co in the bond alloy was replaced by Ni, the hardness of the specimen increased. Thus the 50Fe-20(CuㆍSn)-15Co-15Ni specimen showed the maximum hardness of 104(HRB). The results of 3 point bending test showed that flexure strength decreased along with increase in Ni content. This is attributed to the formation of intermetallic compound(Ni$_{x}$Sn) determined by X-ray diffraction. The fracture surface after 3 point bending test showed that diamond was fractured in the specimen containing 0%, 5%, and 10%Ni, and the fracture occurred at the interface between diamond and matrix in the specimen containing 15%Ni. The cutting ability test showed that the abrasive property was not changed in the specimen containing 0%, 5%, and 10%Ni. The optimum composition determined in this study is 50Fe-20(CuㆍSn)-20Co-10Ni.

A Study on the Qptimum Size of Master Bedroom Walk-In Closet in Apartments (아파트 드레스룸의 적정 수납장 크기에 관한 연구)

  • Kim, Jea-Heun;Seo, Hyun
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.5
    • /
    • pp.152-159
    • /
    • 2011
  • Housing construction companies have been providing master bedroom walk-in closet as a selling point in modest sized apartments as small as 74m$^2$. It is noticeable that master bedroom walk-in closet in apartments provided by public sectors showed much variety in its size. This study tries to set up the guide line of master bedroom walk-in closet size. It is quite reasonable to assume that the biggest space-occupiers in walk-in closet are blankets and clothing. The survey conducted in this study shows that the number of clothes people keep in their closet does not show any significant difference regardless of square footage of their apartments. 34.7% of respondent answered they keep about 50-60 clothes using coat hangers, where 20-30 of those are winter clothes. It is calculated the required optimum length of the walk-in closet is 3.8m$^2$. Considering the most popular longitudinal dimension of master bedroom, 3.9m, and the space needed to accommodate blankets, it can be concluded that the required length of storage in master bedroom walk-in closet is 2.1m. The length can be adjusted reflecting the length of the master bedroom.

Optimum Coagulation of Water Treatment Plant using On-line Floc Monitoring System (정수장 응집제주입 최적화를 위한 플럭 모니터링)

  • Hwang, Hwando;Lim, Sangho;Sung, Kyujong;Han, Youngjin;Kim, Youngbeom;Kwak, Jongwoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.397-406
    • /
    • 2009
  • This study was conducted to monitor the floc sizes forming in the mixing zone in the water treatment plant. The dosing amount of poly aluminium chloride(PAC) was determined by particle dispersion analyzer(iPDA) in the lab and field scale test. During a field test period, PAC coagulant was used and the raw water was taken from Nakdong river. PAC wad diluted to activate the coagulant, leading to bring the more homogeneous dispersion in the shorter time. To monitor the floc sizes, the unit of floc size index(FSI) was used. With increasing of raw water turbidity, FSI value was increased. Also, the increased dosing amount of PAC brought the increased FSI and with overdosing of coagulant was in turn decreased. When the PAC was fed into the raw water after dilution in a field scale test, the width of FSI was narrower compared with the feeding of the mother liquor of PAC, implying that the formed flocs are denser and more uniform sizes. The width of FSI in average was varied on depending on the basicity of coagulant. Also, dF value, fractal dimension was evalued with the different coagulants, showing from 2.01 to 2.03. On-line floc monitor was effective for the optimal dosing in the drinking water plant.