• Title/Summary/Keyword: a nonlinear contour

Search Result 40, Processing Time 0.025 seconds

2-axis tracking control of servo system with two-degree-of-freedom (2자유도를 갖는 서보 시스템의 2축 추적제어)

  • 이제희;박호준;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.844-847
    • /
    • 1996
  • This paper describes the servo position control for the 2-axis positioning table the servo controller consists of conventional feedback loops, disturbance observer. To reduce the contour error, which occurs in the multi-dimensions machines, cross-coupled controller(CCC) is suggested. A weak point of the CCC is their low effectiveness in dealing with arbitrary nonlinear contour such as circles and parabolas. This paper introduces a new nonlinear CCC that is based on control gains that vary during the contour movement The gains of CCC and adjusted in real time according to the shape of nonlinear contour. The feedback controller based on the disturbance observer compensated for external disturbance, plant uncertainty and bad effectiveness by friction model. Suggested servo controller which improve the contouring accuracy, apply to the 2-axis system. Simulation results on 2-axis table verify the effectiveness of the proposed servo controller.

  • PDF

Cross-Coupling Controller for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 교차축 연동제어기)

  • Jee, Sung-Chul;Lee, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.446-451
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) algorithm with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

Adaptive Cross-Coupling Control for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 적응 교차축 연동제어)

  • Lee, Yong-Seok;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.108-114
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control(CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

3-Axis Coupling Controller for High-Precision/High-Speed Contour Machining (고정밀 고속 윤곽가공을 위한 3축 연동제어기)

  • 지성철;구태훈
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.40-47
    • /
    • 2004
  • This paper proposes a three-axis coupling controller designed to improve the contouring accuracy in machining of 3D nonlinear contours. The proposed coupling controller is based on an innovative 3D contour error model and a PID control law. The novel contour error model provides almost exact calculation of contour errors in real-time for arbitrary contours and can be integrated with any type of existing interpolator. In the proposed method, three axes of motion are coordinated by the proposed coupling controller along with a proportional controller for each axis. The proposed contour error model and coupling controller are evaluated through computer simulations. The simulation results show that the proposed 3-axis coupling controller with the new contour error model substantially can improve the contouring accuracy by order of magnitude compared with the existing uncoupled controllers in high-speed machining of nonlinear contours.

Adaptive Cross-Coupling Control System Considering Cutting Effects (절삭효과를 고려한 적응 교차축 연동제어 시스템)

  • Ji, Seong-Cheol;Yu, Sang-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1480-1486
    • /
    • 2002
  • In this study, the cross-coupling control (CCC) with three new features is proposed to maintain contour precision in high-speed nonlinear contour machining. One is an improved contour error model that provides almost exact calculation of the errors. Another is the utilization of variable controller gains based on the instantaneous curvature of the contour and the variable command. For this scheme, a stability is analyzed. As a result, the stability region is obtained, and the variable gains are decided within that region. The other scheme in the proposed CCC is a real-time feedrate adaptation module to regulate cutting force fur better surface finish through regulation of material removal rate (MRR). The simulation results show that the proposed CCC system can provide better precision than the existing method particularly in high-speed machining of nonlinear contours.

Adaptive Cross-Coupling Controller for Precision Contour Machining (정밀 윤곽가공을 위한 적응 교차축 연동제어기)

  • 윤상필;지성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. In addition, a real-time federate adaptation scheme is included in the proposed CCC to regulate cutting force. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy and regulates cutting force more effectively than the existing method.

  • PDF

Improvement of Historical-Hanja Recognition Using a Nonlinear Transform of Contour Directional Feature Vectors

  • Kim, Min Soo;Kim, Jin Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.503-511
    • /
    • 2004
  • In Korea, OCR-based techniques have been developed for digital library construction of historical documents. In this paper, we propose the nonlinear transform of contour directional feature (CDF) vectors using log it and power transforms with skewness criterion to enhance the discriminant power. Experiments were conducted using samples from Seung-jung-won diaries (Diaries of King's Secretaries). Our results show that proposed method outperforms the others like Box-Cox transform in this database.

Cross-Coupled Control for the Friction Compensation of CNC Machines (CNC 공작 기계의 마찰력 보상을 위한 상호 결합 제어)

  • Joo, Jeong-Hong;Lee, Hyun-Chul;Lee, Yun-Jung;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.462-470
    • /
    • 1999
  • In this paper, we proposed a cross-couple controller for compensating nonlinear friction of the X-Y table of CNC machines. Due to the nonlinearity of the frictions, large contour errors, referred to as quadrant glitches, occur when each axis of the X-Y table makes a zero velocity crossing. To reduce the quadrant glitches the friction compensators and nonlinear friction observers for estimating Coulomb frictions are employed in the proposed method. A hyperbolic tangent function is used in reducing the magnitude of quadrant glitches and the CEM (Contour Error Model) is utilized for the estimation of the velocities. The performance of the proposed compensators is evaluated for several trajectories by computer simulations.

  • PDF

Analysis of Steady Vortex Rings Using Contour Dynamics Method for Fluid Velocity

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2022
  • Most studies on the shape of the steady vortex ring have been based on the Stokes stream function approach. In this study, the velocity approach is introduced as a trial approach. A contour dynamics method for fluid velocity is used to analyze the Norbury-Fraenkel family of vortex rings. Analytic integration is performed over the logarithmic-singular segment. A system of nonlinear equations for the discretized shape of the vortex core is formulated using the material boundary condition of the core. An additional condition for the velocities of the vortical and impulse centers is introduced to complete the system of equations. Numerical solutions are successfully obtained for the system of nonlinear equations using the iterative scheme. Specifically, the evaluation of the kinetic energy in terms of line integrals is examined closely. The results of the proposed method are compared with those of the stream function approaches. The results show good agreement, and thereby, confirm the validity of the proposed method.

Design of Contour Error Models using Contour Error Vector (윤곽오차 벡터를 이용한 윤곽오차 모델 설계)

  • 최정희;이명훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.895-898
    • /
    • 2003
  • The higher precision is demanded in modem manufacturing and it requires the more accurate servo controller. Cross-coupling control (CCC) has been developed to improve contouring motion. In this paper we introduce a new nonlinear CCC that is based on contour-error-vector using a parametric curve interpolator. A vector from the actual tool position to the nearest point on the desire path is directly adopted. The contour-error-vector is determined by constructing a tangential vector of nearest point on desired curve and determining the vector perpendicular to this tangential vector from the actual tool position. Moreover, the vector CCC can apply directly and easily to free-form curves include convex and concave form. The experimental results on a three-axis CNC machine center show that the present approach significantly improves motion accuracy in multi-axis motion

  • PDF