• Title/Summary/Keyword: a multi-target

Search Result 1,266, Processing Time 0.029 seconds

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Development of New Variables Affecting Movie Success and Prediction of Weekly Box Office Using Them Based on Machine Learning (영화 흥행에 영향을 미치는 새로운 변수 개발과 이를 이용한 머신러닝 기반의 주간 박스오피스 예측)

  • Song, Junga;Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.67-83
    • /
    • 2018
  • The Korean film industry with significant increase every year exceeded the number of cumulative audiences of 200 million people in 2013 finally. However, starting from 2015 the Korean film industry entered a period of low growth and experienced a negative growth after all in 2016. To overcome such difficulty, stakeholders like production company, distribution company, multiplex have attempted to maximize the market returns using strategies of predicting change of market and of responding to such market change immediately. Since a film is classified as one of experiential products, it is not easy to predict a box office record and the initial number of audiences before the film is released. And also, the number of audiences fluctuates with a variety of factors after the film is released. So, the production company and distribution company try to be guaranteed the number of screens at the opining time of a newly released by multiplex chains. However, the multiplex chains tend to open the screening schedule during only a week and then determine the number of screening of the forthcoming week based on the box office record and the evaluation of audiences. Many previous researches have conducted to deal with the prediction of box office records of films. In the early stage, the researches attempted to identify factors affecting the box office record. And nowadays, many studies have tried to apply various analytic techniques to the factors identified previously in order to improve the accuracy of prediction and to explain the effect of each factor instead of identifying new factors affecting the box office record. However, most of previous researches have limitations in that they used the total number of audiences from the opening to the end as a target variable, and this makes it difficult to predict and respond to the demand of market which changes dynamically. Therefore, the purpose of this study is to predict the weekly number of audiences of a newly released film so that the stakeholder can flexibly and elastically respond to the change of the number of audiences in the film. To that end, we considered the factors used in the previous studies affecting box office and developed new factors not used in previous studies such as the order of opening of movies, dynamics of sales. Along with the comprehensive factors, we used the machine learning method such as Random Forest, Multi Layer Perception, Support Vector Machine, and Naive Bays, to predict the number of cumulative visitors from the first week after a film release to the third week. At the point of the first and the second week, we predicted the cumulative number of visitors of the forthcoming week for a released film. And at the point of the third week, we predict the total number of visitors of the film. In addition, we predicted the total number of cumulative visitors also at the point of the both first week and second week using the same factors. As a result, we found the accuracy of predicting the number of visitors at the forthcoming week was higher than that of predicting the total number of them in all of three weeks, and also the accuracy of the Random Forest was the highest among the machine learning methods we used. This study has implications in that this study 1) considered various factors comprehensively which affect the box office record and merely addressed by other previous researches such as the weekly rating of audiences after release, the weekly rank of the film after release, and the weekly sales share after release, and 2) tried to predict and respond to the demand of market which changes dynamically by suggesting models which predicts the weekly number of audiences of newly released films so that the stakeholders can flexibly and elastically respond to the change of the number of audiences in the film.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Designing an Intelligent Advertising Business Model in Seoul's Metro Network (서울지하철의 지능형 광고 비즈니스모델 설계)

  • Musyoka, Kavoya Job;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.1-31
    • /
    • 2017
  • Modern businesses are adopting new technologies to serve their markets better as well as to improve efficiency and productivity. The advertising industry has continuously experienced disruptions from the traditional channels (radio, television and print media) to new complex ones including internet, social media and mobile-based advertising. This case study focuses on proposing intelligent advertising business model in Seoul's metro network. Seoul has one of the world's busiest metro network and transports a huge number of travelers on a daily basis. The high number of travelers coupled with a well-planned metro network creates a platform where marketers can initiate engagement and interact with both customers and potential customers. In the current advertising model, advertising is on illuminated and framed posters in the stations and in-car, non-illuminated posters, and digital screens that show scheduled arrivals and departures of metros. Some stations have digital screens that show adverts but they do not have location capability. Most of the current advertising media have one key limitation: space. For posters whether illuminated or not, one space can host only one advert at a time. Empirical literatures show that there is room for improving this advertising model and eliminate the space limitation by replacing the poster adverts with digital advertising platform. This new model will not only be digital, but will also provide intelligent advertising platform that is driven by data. The digital platform will incorporate location sensing, e-commerce, and mobile platform to create new value to all stakeholders. Travel cards used in the metro will be registered and the card scanners will have a capability to capture traveler's data when travelers tap their cards. This data once analyzed will make it possible to identify different customer groups. Advertisers and marketers will then be able to target specific customer groups, customize adverts based on the targeted consumer group, and offer a wide variety of advertising formats. Format includes video, cinemagraphs, moving pictures, and animation. Different advert formats create different emotions in the customer's mind and the goal should be to use format or combination of formats that arouse the expected emotion and lead to an engagement. Combination of different formats will be more effective and this can only work in a digital platform. Adverts will be location based, ensuring that adverts will show more frequently when the metro is near the premises of an advertiser. The advertising platform will automatically detect the next station and screens inside the metro will prioritize adverts in the station where the metro will be stopping. In the mobile platform, customers who opt to receive notifications will receive them when they approach the business premises of advertiser. The mobile platform will have indoor navigation for the underground shopping malls that will allow customers to search for facilities within the mall, products they may want to buy as well as deals going on in the underground mall. To create an end-to-end solution, the mobile solution will have a capability to allow customers purchase products through their phones, get coupons for deals, and review products and shops where they have bought a product. The indoor navigation will host intelligent mobile-based advertisement and a recommendation system. The indoor navigation will have adverts such that when a customer is searching for information, the recommendation system shows adverts that are near the place traveler is searching or in the direction that the traveler is moving. These adverts will be linked to the e-commerce platform such that if a customer clicks on an advert, it leads them to the product description page. The whole system will have multi-language as well as text-to-speech capability such that both locals and tourists have no language barrier. The implications of implementing this model are varied including support for small and medium businesses operating in the underground malls, improved customer experience, new job opportunities, additional revenue to business model operator, and flexibility in advertising. The new value created will benefit all the stakeholders.

Impact of impulsiveness on mobile banking usage: Moderating effect of credit card use and mediating effect of SNS addiction (충동성이 모바일뱅킹 사용률에 미치는 영향: 신용카드 사용 여부의 조절효과와 SNS 중독의 매개효과)

  • Lee, Youmi;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.113-137
    • /
    • 2021
  • According to the clear potential of mobile banking growth, many studies related to this are being conducted, but in Korea, it is concentrated on the analysis of technical factors or consumers' intentions, behaviors, and satisfaction. In addition, even though it has a strong customer base of 20s, there are few studies that have been conducted specifically for this customer group. In order for mobile banking to take a leap forward, a strategy to secure various perspectives is needed not only through research on itself but also through research on external factors affecting mobile banking. Therefore, this study analyzes impulsiveness, credit card use, and SNS addiction among various external factors that can significantly affect mobile banking in their 20s. This study examines whether the relationship between impulsiveness and mobile banking usage depends on whether or not a credit card is used, and checks whether a customer's impulsiveness is possible by examining whether a credit card is used. Based on this, it is possible to establish new standards for classification of marketing target groups of mobile banking. After finding out the static or unsuitable relationship between whether to use a credit card and impulsiveness, we want to indirectly predict the customer's impulsiveness through whether to use a credit card or not to use a credit card. It also verifies the mediating effect of SNS addiction in the relationship between impulsiveness and mobile banking usage. For this analysis, the collected data were conducted according to research problems using the SPSS Statistics 25 program. The findings are as follows. First, positive urgency has been shown to have a significant static effect on mobile banking usage. Second, whether to use credit cards has shown moderating effects in the relationship between fraudulent urgency and mobile banking usage. Third, it has been shown that all subfactors of impulsiveness have significant static relationships with subfactors of SNS addiction. Fourth, it has been confirmed that the relationship between positive urgency, SNS addiction, and mobile banking usage has total effect and direct effect. The first result means that mobile banking usage may be high if positive urgency is measured relatively high, even if the multi-dimensional impulsiveness scale is low. The second result indicates that mobile banking usage rates were not affected by the independent variable, negative urgency, but were found to have a significant static relationship with negative urgency when using credit cards. The third result means that SNS is likely to become addictive if lack of premeditation or lack of perseverance is high because it provides instant enjoyment and satisfaction as a mobile-based service. This also means that SNS can be used as an avoidance space for those with negative urgency, and as an emotional expression space for those with high positive urgency.

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.

Research on the Visual Historical & Cultural Resources of Seongbuk-dong (서울 성북동 역사문화자원 주변경관의 시각적 특성연구)

  • Lee, Won-Ho;Kim, Jae-Ung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.118-127
    • /
    • 2013
  • In this study, Seongbuk-dong historical & cultural resources of the surrounding landscape were analyzed by the visual characteristics of the landscape adjective analysis. Research was investigate to the relationship between visual characteristics and preferences and Research in the following way. Selected historical and cultural resources in the surrounding area are located in Seongbuk-dong 30 slices the survey was conducted. Landscape preference factors to identify the scale of 16 adjectives and then factor analysis was conducted. Lastly, Analysis of variance and regression analysis were conducted in order to determine the impact of the last image factors on visual preferences. Firstly, The results can be summarized as follows. Officer for 30 pictures appear in Seongbuk-dong in the historical and cultural resources, and distributed around the target preference for the 16 adjectives analysis yielded an average result of overall preference were analyzed and that is a 3.72 average. In these photos, VP8, VP9, VP10, VP12, VP15; 4.5 points more than one order higher. The reason is limit of altitude by the Seoul landscape plan for the historical and cultural resources around. It also judged important reason that history and Culture are in harmony with the surrounding cultural property in the conservation area. Secondly, Important factors are factor 1(aesthetic factors), factor 2(cultural factors), factor 3(physical factors) and three factors could be identified. Results of the analysis of variance and regression analysis about factors for visual preference and image shows value of psychological factor is most significant to explain for nearby history &cultural resources of Seongbuk-dong of scenery around. As a result, the state can not view historical and cultural resources for analysis will be located in a residential area near the historical and cultural resources for aesthetic factors. Third, the negative side of the argument is a residential area which is not arranged surrounding landscape maintenance of historical and cultural resources has emerged. Historical and cultural resources in harmony with the phenomena of the physical, cultural, and aesthetic characteristics of the three areas is a positive factor in the high incidence. Factors from that are expressed in this study by analyzing multi-dimensional analysis to derive a factor to be considered important in the management of historical and cultural resources, landscape around is required.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.