• Title/Summary/Keyword: a monitoring

Search Result 21,802, Processing Time 0.134 seconds

A Study on the Ubiquitous Safety Monitoring through Utilizing BIM Technology (BIM기반의 U-안전모니터링시스템)

  • KWON, Chang-Hee
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • This study is the basic direction of the BIM bases ubiquitous safety monitoring. First, studied the background and the purpose of the study, and it's scope and methods. Second, described the concept of BIM and investigated how BIM bases proceed through actual condition of ubiquitous safety monitoring. Third, identified BIM bases ubiquitous safety monitoring which can be applied consistently, Forth, DCP bases ubiquitous safety monitoring which can be applied consistently, Also, Finally, suggested the conclusion and sat the future research by analyzing the study results. It is expected to be worked out a way as a new model ubiquitous safety monitoring which will be combined with a ubiquitous DCP.

Intelligent bolt-jointed system integrating piezoelectric sensors with shape memory alloys

  • Park, Jong Keun;Park, Seunghee
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.135-147
    • /
    • 2016
  • This paper describes a smart structural system, which uses smart materials for real-time monitoring and active control of bolted-joints in steel structures. The goal of this research is to reduce the possibility of failure and the cost of maintenance of steel structures such as bridges, electricity pylons, steel lattice towers and so on. The concept of the smart structural system combines impedance based health monitoring techniques with a shape memory alloy (SMA) washer to restore the tension of the loosened bolt. The impedance-based structural health monitoring (SHM) techniques were used to detect loosened bolts in bolted-joints. By comparing electrical impedance signatures measured from a potentially damage structure with baseline data obtained from the pristine structure, the bolt loosening damage could be detected. An outlier analysis, using generalized extreme value (GEV) distribution, providing optimal decision boundaries, has been carried out for more systematic damage detection. Once the loosening damage was detected in the bolted joint, the external heater, which was bonded to the SMA washer, actuated the washer. Then, the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. Additionally, temperature variation due to the heater was compensated by applying the effective frequency shift (EFS) algorithm to improve the performance of the diagnostic results. An experimental study was conducted by integrating the piezoelectric material based structural health monitoring and the SMA-based active control function on a bolted joint, after which the performance of the smart 'self-monitoring and self-healing bolted joint system' was demonstrated.

Laboratory Environment Monitoring: Implementation Experience and Field Study in a Tertiary General Hospital

  • Kang, Seungjin;Baek, Hyunyoung;Jun, Sunhee;Choi, Soonhee;Hwang, Hee;Yoo, Sooyoung
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.371-375
    • /
    • 2018
  • Objectives: To successfully introduce an Internet of Things (IoT) system in the hospital environment, this study aimed to identify issues that should be considered while implementing an IoT based on a user demand survey and practical experiences in implementing IoT environment monitoring systems. Methods: In a field test, two types of IoT monitoring systems (on-premises and cloud) were used in Department of Laboratory Medicine and tested for approximately 10 months from June 16, 2016 to April 30, 2017. Information was collected regarding the issues that arose during the implementation process. Results: A total of five issues were identified: sensing and measuring, transmission method, power supply, sensor module shape, and accessibility. Conclusions: It is expected that, with sufficient consideration of the various issues derived from this study, IoT monitoring systems can be applied to other areas, such as device interconnection, remote patient monitoring, and equipment/environmental monitoring.

A Development of Real-time Monitoring Techniques for Synchronous Electric Generator Systems (동기 발전기 시스템의 실시간 모니터링 기술 개발)

  • Cho, Hyun Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.182-187
    • /
    • 2017
  • Synchronous generators have been significantly applied in large-scale power plants and its monitoring systems are additionally established to sequentially observe states and outputs. We develop a computer based monitoring device for three-phase synchronous power generators in this paper. First, a test-bed of such generator system is created and then a interface board is constructed to transfer electric signals including the output voltage and the current from generators into a computer system via a data acquisition device. Its RMS(root-mean-square) values are continuously shown on a screen of computer systems and its time-histories graphs are additionally illustrated under a graphic user interface(GUI) mode. Lastly, we carry out real-time experiments using the generator system with the monitoring device to demonstrate its reliability and superiority by comparing results of a generic power analyzer which is well-used in measuring various power systems practically.

Portable Electrocardiograph and Smart Device-based Heart Health Monitoring and Risk Notification System (휴대용 심전도 측정기와 스마트 기기 기반의 심건강 모니터링 및 위험도 알림 시스템)

  • Cho, Jinsoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.73-78
    • /
    • 2013
  • This paper proposes a portable electrocardiograph and smart device-based heart health monitoring and risk notification system. The proposed system consists of a portable electrocardiograph and a smart device for a system user, and a web-based monitoring system for observers. This system can improve the convenience and efficiency of measurement by using a light-weight portable electrocardiograph and a smart device. In addition, any authorized person such as caregiver or family member who is not related to medical institution can monitor users'heart health in real-time using the web-based monitoring system. Therefore, a user and authorized remote observers can efficiently monitor and manage user's heart health in daily-life even without any medical institution's help, and can preemptively deal with any possible dangerous situations, such as degeneration of a cardiac disorder and sudden cardiac death.

A Study on a Internet Remote Control and Monitoring System using a Microprocessor Embedded Controller (마이크로프로세서를 이용한 인터넷 원격감시제어 시스템에 관한 연구)

  • 서인호;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.869-879
    • /
    • 2001
  • Serial communications such as RS-232C or RS-485 have been used to control and monitor the industrial plants for a long in cooperating with a computer or microprocessor. In recent years a great deal of effort has been made to achieve these control and monitoring through Internet network. This paper proposes a microprocessor system to implement remote control and monitoring system through Internet network. The proposed system uses NE2000 compatible NIC for data link and physical layer to access Internet network The microprocessor employed in the system plays a role of interfacing NE2000 compatible NIC interpreting protocols above link layer, controlling and monitoring industrial plants simultaneously. This paper also shows MMI and experimental results which control and monitor two power plants on the computer monitor with a mouse remotely to verify the proposed.

  • PDF

A Monitoring System based on Layered Architecture (계층형 구조를 기반으로 한 모니터링 시스템)

  • Kwon Sung-Ju;Choi Jae-Young;Lee Ji-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.440-447
    • /
    • 2006
  • Grid computing is the complex deployments of various hardware and software components. The Grid environment should provide a mechanism for real-time monitoring and notification. It is very important to implement a monitoring mechanism in the Grid environment. Most existing monitoring systems only focus on their own requirements. With the development of Grid computing technology, the extensible monitoring systems become more and more feasible and popular. In this paper, we describe our research and development works on M-Mon, a novel framework for the flexible and adaptive Grid monitoring system. M-Mon system focuses on some critical issues like scalability, reusability, runtime extensibility, protocol transparency and uniform data representation. To provide interoperability with other monitoring systems and to reuse legacy facilities with a minimum effort, our monitoring system has been developed using service-oriented architecture.

Developing a Safety Scaffold Monitoring System Using Wireless Sensor Network Technology

  • Tserng, H. Ping;Huang, Hung-Jui;Li, Xin-Yan;Huang, Han-Tang
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.324-327
    • /
    • 2015
  • Scaffold is the most commonly used equipment in various types of construction works. Since various types of construction works use the same scaffold equipment, it becomes more difficult to be controlled and managed, thus resulting hazard frequently. According to the information announced in July 2012 by Council of Labor Affairs Executive Yan, the site collapse or incomplete anti-falling protection has led the site to accident frequently, and this is the main reason that causes construction industry occupational disasters. The labor death occupational hazard ratio rises up to 13% in scaffold activity, and the Council of Labor Affairs Executive Yan has showed that the death ratio is higher when using the scaffold in construction site, the total number of death has reached to 139 from 2005 to 2010. In order to ensure the safety of scaffold user, this study tends to build a wireless sensor monitoring system to detect the reliability and safety of the scaffold. The wireless sensor technique applies in this study is different with the traditional monitoring technique which is limited with wired monitoring. Wireless sensor technique does not need wire, it just needs to consider the power supply for establishing the network and receiving stable information, and it can become a monitoring system. In addition, this study also integrates strain gauge technique in this scaffold monitoring system, to develop a real-time monitoring data transfer mechanism and replace the traditional wired single project monitoring equipment. This study hopes to build a scaffold collapse monitoring system to effectively monitor the safety of the scaffold as well as provide the timesaving installation, low-cost and portable features.

  • PDF

In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system

  • Ni, Y.Q.;Li, B.;Lam, K.H.;Zhu, D.P.;Wang, Y.;Lynch, J.P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.83-102
    • /
    • 2011
  • As a testbed for various structural health monitoring (SHM) technologies, a super-tall structure - the 610 m-tall Guangzhou Television and Sightseeing Tower (GTST) in southern China - is currently under construction. This study aims to explore state-of-the-art wireless sensing technologies for monitoring the ambient vibration of such a super-tall structure during construction. The very nature of wireless sensing frees the system from the need for extensive cabling and renders the system suitable for use on construction sites where conditions continuously change. On the other hand, unique technical hurdles exist when deploying wireless sensors in real-life structural monitoring applications. For example, the low-frequency and low-amplitude ambient vibration of the GTST poses significant challenges to sensor signal conditioning and digitization. Reliable wireless transmission over long distances is another technical challenge when utilized in such a super-tall structure. In this study, wireless sensing measurements are conducted at multiple heights of the GTST tower. Data transmission between a wireless sensing device installed at the upper levels of the tower and a base station located at the ground level (a distance that exceeds 443 m) is implemented. To verify the quality of the wireless measurements, the wireless data is compared with data collected by a conventional cable-based monitoring system. This preliminary study demonstrates that wireless sensing technologies have the capability of monitoring the low-amplitude and low-frequency ambient vibration of a super-tall and slender structure like the GTST.

Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring

  • Jeon, Jechan;Choi, Hyeseon;Shin, Dongseok;Kim, Lee-hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In Korea, nonpoint pollutants have a significant effect on rivers' water quality, and they are discharged in very different ways depending on rainfall events. Therefore, preparing an optimal countermeasure against nonpoint pollutants requires much monitoring. The present study was conducted to help prepare a method for installing an automatic nonpoint pollutant measurement system for the cost-effective monitoring of the effect of nonpoint pollutants on rivers. In the present study, monitoring was performed at six sites of a river passing through an urban area with a basin area of $454.3km^2$. The results showed that monitoring could be performed for a relatively long time interval in the upstream and downstream regions, which are mainly comprised of forests, regardless of the rainfall amount. On the contrary, in the urban region, the monitoring had to be performed at a relatively short time interval each time when the rainfall intensity changed. This was because the flow rate was significantly dependent on the rainfall's intensity. The appropriate sites for installing an automatic measurement system were found to be a site before entering the urban region, a site after passing through the urban region, and the end of a river where the effects of nonpoint pollutant sources can be well-decided. The analysis also showed that the monitoring time should be longer for the rainfall events of a higher rainfall class and for the sites closer to the river end. This is because the rainfall runoff has a longer effect on the river. However, the effect of nonpoint pollutant sources was not significantly different between the upstream and the downstream in the cases of rainfall events over 100 mm.