• Title/Summary/Keyword: a model reference control

Search Result 1,083, Processing Time 0.027 seconds

Adaptive Control Incorporating Neural Network for a Pneumatic Servo Cylinder (공압 서보실린더의 신경회로망 결합형 적응제어)

  • Jang Yun Seong;Cho Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.88-95
    • /
    • 2005
  • This paper presents a design scheme of model reference adaptive control incorporating a Neural Network for a pneumatic servo system. The parameters of discrete-time model of plant are estimated by using the recursive least square method. Neural Network is utilized in order to compensate the nonlinear nature of plant such as compressibility of air and frictions present in cylinder. The experiment of a trajectory tracking control using the proposed control scheme has been performed and its effectiveness has been proved by comparing with the results of a model reference adaptive control.

Adaptive Model Reference Control Based on Takagi-Sugeno Fuzzy Models with Applications to Flexible Joint Manipulators

  • Lee, Jongbae;Lim, Joon-hong;Park, Chang-Woo;Kim, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.337-346
    • /
    • 2004
  • The control scheme using fuzzy modeling and Parallel Distributed Compensation (PDC) concept is proposed to provide asymptotic tracking of a reference signal for the flexible joint manipulators with uncertain parameters. From Lyapunov stability analysis and simulation results, the developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop multi-input/multi-output system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

A Learning Algorithm for Optimal Fuzzy Control Rules (최적의 퍼지제어규칙을 얻기위한 퍼지학습법)

  • Chung, Byeong-Mook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.399-407
    • /
    • 1996
  • A fuzzy learning algorithm to get the optimal fuzzy rules is presented in this paper. The algorithm introduces a reference model to generate a desired output and a performance index funtion instead of the performance index table. The performance index funtion is a cost function based on the error and error-rate between the reference and plant output. The cost function is minimized by a gradient method and the control input is also updated. In this case, the control rules which generate the desired response can be obtained by changing the portion of the error-rate in the cost funtion. In SISO(Single-Input Single- Output)plant, only by the learning delay, it is possible to experss the plant model and to get the desired control rules. In the long run, this algorithm gives us the good control rules with a minimal amount of prior informaiton about the environment.

Performance Evaluation of a BACnet-based Fire Detection and Monitoring System for use in Buildings

  • Song Won-Seok;Hong Seung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.70-76
    • /
    • 2006
  • The objective of this paper is to propose a reference model of a fire detection and monitoring system using MS/TP protocol. The reference model is designed to satisfy the requirements of response time and flexibility. The reference model is operated on the basis of BACnet, a standard communication protocol for building automation systems. Validity of the reference model was examined using a simulation model. This study also evaluated the performance of the BACnet-based fire detection and monitoring system in terms of network-induced delay. Simulation results show that the reference model satisfies the requirements of the fire detection and monitoring system.

Speed-Sensorless Control of an Induction Motor using Model Reference Adaptive Fuzzy System (기준 모델 적응 퍼지 시스템을 이용한 유도전동기의 속도 센서리스 제어)

  • Choi, Sung-Dae;Kang, Sung-Ho;Ko, Bong-Woon;Nam, Hoon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2064-2066
    • /
    • 2002
  • This paper proposes Model Reference Adaptive Fuzzy System(MRAFS) using Fuzzy Logic Controller(FLC) as a adaptive laws in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. MRAFS estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error as the input of FLC. The computer simulation is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

Decentralized control of interconnected systems using a neuro-coordinator and an application to a planar robot manipulator (신경회로망을 이용한 상호 연결된 시스템의 비집중 제어와 평면 로봇 매니퓰레이터에의 응용)

  • Chung, Chung, Hee-Tae;Jeon, Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.88-95
    • /
    • 1996
  • It is inevitable for local systems to have deviations which represent interactions and modeling errors originated from the decomposition process of a large scale system. This paper presents a decentralized control scheme for interconnected systems using local linear models and a neuro-coordinator. In the proposed method, the local system is composed of a linear model and unknown deviations caused by linearizing the subsystems around operating points or by estimating parameters of the subsystems. Because the local system has unmeasurable deviations we define a local reference model which consists of a local linear model and a neural network to estimate the deviations indirectly. The reference model is reformed into a linear model which has no deviations through a transformation of input variables and we obtain an optimum feedback control law which minimizes a local performance index. Finally, we derive a decentralized feedback control law which consists of local linear states and neural network outputs. In the decentralized control, the neuro-coordinator generates a corrective control signal to cancel the effect of deviations through backpropagation learning with the errors obtained from the differences of the local system outputs and reference model outputs. Also, the stability of local system is proved by the degree of learning of the neural network under an assumption on a neural network learning index. It is shown by computer simulations that the proposed control scheme can be applied successfully to the control of a biased two-link planar robot manipulator.

  • PDF

Model Reference Adaptive Control Using Non-Euclidean Gradient Descent

  • Lee, Sang-Heon;Robert Mahony;Kim, Il-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.330-340
    • /
    • 2002
  • In this Paper. a non-linear approach to a design of model reference adaptive control is presented. The approach is demonstrated by a case study of a simple single-pole and no zero, linear, discrete-time plant. The essence of the idea is to generate a full non-linear model of the plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with respect to a Riemannian metric. It is shown how a Riemannian metric can be chosen so that the modelled plant dynamics do in fact match the true plant dynamics. The performance of the proposed scheme is compared to a traditional model reference adaptive control scheme using the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.

Model Reference Adaptive Control of a Flexible Structure

  • Yang, Kyung-Jinn;Hong, Keum-Shik;Rhee, Eun-Jun;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1356-1368
    • /
    • 2001
  • In this paper, the model reference adaptive control (MRAC) of a flexible structure is investigated. Any mechanically flexible structure is inherently distributed parameter in nature, so that its dynamics are described by a partial, rather than ordinary, differential equation. The MRAC problem is formulated as an initial value problem of coupled partial and ordinary differential equations in weak form. The well-posedness of the initial value problem is proved. The control law is derived by using the Lyapunov redesign method on an infinite dimensional filbert space. Uniform asymptotic stability of the closed loop system is established, and asymptotic tracking, i. e., convergence of the state-error to zero, is obtained. With an additional persistence of excitation condition for the reference model, parameter-error convergence to zero is also shown. Numerical simulations are provided.

  • PDF

A Determination of the Reference Model for the Model Following System using an Expert System (전문가 시스템을 이용한 모델 추종 시스템의 기준 모델 선정)

  • Moon, Dong-Wook;Hwang, Young-Moon;Kang, Young-Ho;Lee, Hoo-Min;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1069-1072
    • /
    • 1996
  • In modern control engineering, the model following system is a typical method. The model following system's performance is due to algorithm of control law, accuracy of modeling to the plant, and dynamics of the reference model. But the determination of the reference model depends on knowledge of an expert. Using an expert system, the determination method of the reference model was proposed in this paper. So, the reference model can be selected by user who has no Knowledge of dynamics and parameters.

  • PDF

An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method (모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.