• Title/Summary/Keyword: a model based control

Search Result 7,690, Processing Time 0.045 seconds

Model-Free Adaptive Integral Backstepping Control for PMSM Drive Systems

  • Li, Hongmei;Li, Xinyu;Chen, Zhiwei;Mao, Jingkui;Huang, Jiandong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1193-1202
    • /
    • 2019
  • A SMPMSM drive system is a typical nonlinear system with time-varying parameters and unmodeled dynamics. The speed outer loop and current inner loop control structures are coupled and coexist with various disturbances, which makes the speed control of SMPMSM drive systems challenging. First, an ultra-local model of a PMSM driving system is established online based on the algebraic estimation method of model-free control. Second, based on the backstepping control framework, model-free adaptive integral backstepping (MF-AIB) control is proposed. This scheme is applied to the permanent magnet synchronous motor (PMSM) drive system of an electric vehicle for the first time. The validity of the proposed control scheme is verified by system simulations and experimental results obtained from a SMPMSM drive system bench test.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Fault Tolerant Control for Nonlinear Boiler System (비선형 보일러 시스템에서의 이상허용제어)

  • Yoon, Seok-Min;Kim, Dae-Woo;Lee, Myung-Eui;Kwon, O-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

A cross-domain access control mechanism based on model migration and semantic reasoning

  • Ming Tan;Aodi Liu;Xiaohan Wang;Siyuan Shang;Na Wang;Xuehui Du
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1599-1618
    • /
    • 2024
  • Access control has always been one of the effective methods to protect data security. However, in new computing environments such as big data, data resources have the characteristics of distributed cross-domain sharing, massive and dynamic. Traditional access control mechanisms are difficult to meet the security needs. This paper proposes CACM-MMSR to solve distributed cross-domain access control problem for massive resources. The method uses blockchain and smart contracts as a link between different security domains. A permission decision model migration method based on access control logs is designed. It can realize the migration of historical policy to solve the problems of access control heterogeneity among different security domains and the updating of the old and new policies in the same security domain. Meanwhile, a semantic reasoning-based permission decision method for unstructured text data is designed. It can achieve a flexible permission decision by similarity thresholding. Experimental results show that the proposed method can reduce the decision time cost of distributed access control to less than 28.7% of a single node. The permission decision model migration method has a high decision accuracy of 97.4%. The semantic reasoning-based permission decision method is optimal to other reference methods in vectorization and index time cost.

Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 추정기 기반 적응 유도기법)

  • 최진영;좌동경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.680-688
    • /
    • 2004
  • This paper proposes an observer-based method for adaptive nonlinear guidance. Previously, adaptive nonlinear guidance law is proposed considering target maneuver and control loop dynamics. However, several information of this guidance law is not available, and therefore needs to be estimated for more practical application. Accordingly, considering the unavailable information as bounded time-varying uncertainties, an integrated guidance and control model is re-formulated in normal form with respect to available states including target uncertainties and control loop dynamics. Then, a nonlinear observer is designed based on the integrated guidance and control model. Finally, using the estimates for states and uncertainties, an observer-based adaptive guidance law is proposed to guarantee the desired interception performance against maneuvering target. The proposed approach can be effectively used against target maneuver and the limited performance of control loop. The stability analyses and simulations of the proposed observer and guidance law are included to demonstrate the practical application of our scheme.

Robust Internal Model Control of Three-Phase Active Power Filter for Stable Operation in Electric Power Equipment (전력설비의 안정한 운용을 위한 3상 능동전력필터의 강인한 내부모델제어)

  • Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1487-1493
    • /
    • 2013
  • A new simple control method for active power filter, which can realize the complete compensation of harmonics is proposed. In the proposed scheme, a model-based digital current control strategy is presented. The proposed control system is designed and implemented in a form referred to as internal model control structure. This method provides a convenient way for parameterizing the controller in term of the nominal system model, including time-delays. As a result, the resulting controller parameters are directly set based on the power circuit parameters, which make tuning of the controllers straightforward task. In the proposed control algorithm, overshoots and oscillations due to the computation time delay is prevented by explicit incorporating of the delay in the controller transfer function. In addition, a new compensating current reference generator employing resonance model implemented by a DSP(Digital Signal Processor) is introduced. Resonance model has an infinite gain at resonant frequency, and it exhibits a band-pass filter. Consequently, the difference between the instantaneous load current and the output of this model is the current reference signal for the harmonic compensation.

Fault-Tolerant Control for 5L-HNPC Inverter-Fed Induction Motor Drives with Finite Control Set Model Predictive Control Based on Hierarchical Optimization

  • Li, Chunjie;Wang, Guifeng;Li, Fei;Li, Hongmei;Xia, Zhenglong;Liu, Zhan
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.989-999
    • /
    • 2019
  • This paper proposes a fault-tolerant control strategy with finite control set model predictive control (FCS-MPC) based on hierarchical optimization for five-level H-bridge neutral-point-clamped (5L-HNPC) inverter-fed induction motor drives. Fault-tolerant operation is analyzed, and the fault-tolerant control algorithm is improved. Adopting FCS-MPC based on hierarchical optimization, where the voltage is used as the controlled objective, called model predictive voltage control (MPVC), the postfault controller is simplified as a two layer control. The first layer is the voltage jump limit, and the second layer is the voltage following control, which adopts the optimal control strategy to ensure the current following performance and uniqueness of the optimal solution. Finally, simulation and experimental results verify that 5L-HNPC inverter-fed induction motor drives have strong fault tolerant capability and that the FCS-MPVC based on hierarchical optimization is feasible.

Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems (TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

The Control of Superheat and Capacity for a Variable Speed Refrigeration System Based on PI Control Logic

  • Hua, Li;Jeong, Seok-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.54-60
    • /
    • 2007
  • In this paper, we suggest the high efficient control method based on general PI control law for a variable speed refrigeration system. In the variable speed refrigeration system, the capacity and the superheat are mainly controlled by an inverter and an electronic expansion valve, respectively, for saving energy and improving coefficient of performance. Thus, we proposed a decoupling model to eliminate the interfering loop between the capacity and superheat at first. Next, we designed PI controller to control the capacity and superheat independently and simultaneously. Finally, the control performance was investigated through some experiments. The experimental results showed that the proposed PI controller based on the decoupling model can obtain good control performance under the various control references and thermal load.

Study on the Model based Control considering Rotary Tillage of Autonomous Driving Agricultural Robot (자율주행 밭농업로봇의 로터리 경작을 고려한 모델 기반 제어 연구)

  • Song, Hajun;Yang, Kyon-Mo;Oh, Jang-Seok;Song, Su-Hwan;Han, Jong-Boo;Seo, Kap-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.233-239
    • /
    • 2020
  • The aims of this paper is to develop a modular agricultural robot and its autonomous driving algorithm that can be used in field farming. Actually, it is difficult to develop a controller for autonomous agricultural robot that transforming their dynamic characteristics by installation of machine modules. So we develop for the model based control algorithm of rotary machine connected to agricultural robot. Autonomous control algorithm of agricultural robot consists of the path control, velocity control, orientation control. To verify the developed algorithm, we used to analytical techniques that have the advantage of reducing development time and risks. The model is formulated based on the multibody dynamics methods for high accuracy. Their model parameters get from the design parameter and real constructed data. Then we developed the co-simulation that is combined between the multibody dynamics model and control model using the ADAMS and Matlab simulink programs. Using the developed model, we carried out various dynamics simulation in the several rotation speed of blades.