• Title/Summary/Keyword: a mobile manipulator

Search Result 105, Processing Time 0.029 seconds

Design and Implementation of Back-stepping Control for Path Tracking of Mobile Manipulator of Logistics and Manufacturing (물류이송 및 제조용 이동형 매니퓰레이터의 경로 추적을 위한 백스테핑 제어 설계와 구현)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.301-306
    • /
    • 2021
  • In this paper, we propose a modified back-stepping control method in view of the dynamic model of mobile manipulator has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile manipulator. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot systems. and the modified adaptive back0stepping method is applied to constructing the controller. The proposed controller can realize the tracking trajectory of the reference path. The efficiency and robustness of this control method is demonstrated by the simulation.

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

Inertia Property-Based Redundancy Resolution in Posture Control of Mobile Manipulator

  • Kang, Sungchul;Komoriya, Kiyoshi;Yokoi, Kazuhito;Koutoku, Tetsuo;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.4-155
    • /
    • 2001
  • This paper deals with the inertia property-based redundancy resolution in posture control of a mobile manipulator. As a measure for the redundancy resolution of a mobile manipulator, an effective inertia at the end effector in the operational space is proposed and investigated. The reduced effective inertia has a significant effect on reducing the impulse force in collision with environment. To find a posture satisfying both the reduced inertia and joint limit constraints, we propose a combined potential function method that can deal with multiple constraints. The proposed reduced inertia property algorithm is integrated into a damping controller to reduce the impulse force at collision and to regulate the contact force in mobile manipulation ...

  • PDF

A Study on Flexible Control of Dual Arm-Mobile Robot for Smart Factory (스마트펙토리를 위한 듀얼암을 갖는 모바일 로봇의 유연제어에 관한 연구)

  • Lee, Woo-Song;Ha, Eun-Tha;Jeong, Yang-Keun;Park, In-Man
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • This study proposes a new approach to design of the robust control application of a mobile manipulator with dual-arm. The mobil manipulator robot system consists of 12 DOF manipulators and a mobile robot. Kinematics of the robotics has been analyzed and simulated to verify reliability. A position-based torque control technique is applied to the robot by adding an outer loop to interact with the environment. Experimental studies of torque control applications of robot arm and interaction with a user operator are conducted. Experimental results has been proved that the robot arm performed regulated to follow the desired reference.

A Study on Adaptive Tracking Control of a Mobile Manipulator for Contour Following (궤도추종을 위한 메니퓰레이터의 적응 추종 제어에 관한 연구)

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.394-396
    • /
    • 2005
  • In this paper, we propose an adaptive tracking control method of a mobile manipulator for contour following with a kinematic model to have several unknown dimension parameters. Moreover, we will use the decentralized control method to design two independent controllers for two subsystems. The proposed controllers in this paper are based on the Lyapunov function in order to guarantee the stability of whole system for contour following task. The updated laws are also designed to estimated the unknown dimension parameters. Finally, the simulation results are presented to show the validity of the proposed controllers in this paper.

  • PDF

Integrated System of Mobile Manipulator with Speech Recognition and Deep Learning-based Object Detection (음성인식과 딥러닝 기반 객체 인식 기술이 접목된 모바일 매니퓰레이터 통합 시스템)

  • Jang, Dongyeol;Yoo, Seungryeol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.270-275
    • /
    • 2021
  • Most of the initial forms of cooperative robots were intended to repeat simple tasks in a given space. So, they showed no significant difference from industrial robots. However, research for improving worker's productivity and supplementing human's limited working hours is expanding. Also, there have been active attempts to use it as a service robot by applying AI technology. In line with these social changes, we produced a mobile manipulator that can improve the worker's efficiency and completely replace one person. First, we combined cooperative robot with mobile robot. Second, we applied speech recognition technology and deep learning based object detection. Finally, we integrated all the systems by ROS (robot operating system). This system can communicate with workers by voice and drive autonomously and perform the Pick & Place task.

Objects Tracking of the Mobile Robot Using the Hybrid Visual Servoing (혼합 비주얼 서보잉을 통한 모바일 로봇의 물체 추종)

  • Park, Kang-IL;Woo, Chang-Jun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.781-787
    • /
    • 2015
  • This paper proposes a hybrid visual servoing algorithm for the object tracking by a mobile robot with the stereo camera. The mobile robot with the stereo camera performs an object recognition and object tracking using the SIFT and CAMSHIFT algorithms for the hybrid visual servoing. The CAMSHIFT algorithm using stereo camera images has been used to obtain the three-dimensional position and orientation of the mobile robot. With the hybrid visual servoing, a stable balance control has been realized by a control system which calculates a desired angle of the center of gravity whose location depends on variations of link rotation angles of the manipulator. A PID controller algorithm has adopted in this research for the control of the manipulator since the algorithm is simple to design and it does not require unnecessary complex dynamics. To demonstrate the control performance of the hybrid visual servoing, real experiments are performed using the mobile manipulator system developed for this research.

Visual Servoing of a Mobile Manipulator Based on Stereo Vision

  • Lee, H.J.;Park, M.G.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.767-771
    • /
    • 2003
  • In this study, stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the position of the target using a stereo vision system. While a monocular vision system needs properties such as geometric shape of a target, a stereo vision system enables the robot to find the position of a target without additional information. Many algorithms have been studied and developed for an object recognition. However, most of these approaches have a disadvantage of the complexity of computations and they are inadequate for real-time visual servoing. However, color information is useful for simple recognition in real-time visual servoing. In this paper, we refer to about object recognition using colors, stereo matching method, recovery of 3D space and the visual servoing.

  • PDF

Visual Servoing of a Mobile Manipulator Based on Stereo Vision (스테레오 영상을 이용한 이동형 머니퓰레이터의 시각제어)

  • Lee Hyun Jeong;Park Min Gyu;Lee Min Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.411-417
    • /
    • 2005
  • In this study, stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the potion of the target using a stereo vision system. While a monocular vision system needs properties such as geometric shape of a target, a stereo vision system enables the robot to find the position of a target without additional information. Many algorithms have been studied and developed for an object recognition. However, most of these approaches have a disadvantage of the complexity of computations and they are inadequate for real-time visual servoing. Color information is useful for simple recognition in real-time visual servoing. This paper addresses object recognition using colors, stereo matching method to reduce its calculation time, recovery of 3D space and the visual servoing.

A Study on the Visual Servoing of Autonomous Mobile Inverted Pendulum (자율주행 모바일 역진자의 비주얼서보잉에 대한 연구)

  • Lee, Junmin;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.240-247
    • /
    • 2013
  • This paper proposes an optimal three-dimensional coordinate implementation of the vision sensor using two CCD cameras. The PBVS (Position based visual servoing) is implemented using the positional information obtained from images. Stereo vision by PBVS method that has enhanced every frame using calibration parameters is effective in the distance calculation. The IBVS (Image based visual servoing) is also implemented using the difference between reference and obtained images. Stereo vision by IBVS method calculates the distance using rotation angle of motors that correspond eyes and neck without enhanced images. The PBVS method is compared with the IBVS method in terms of advantages, disadvantages, computing time, and performances. Finally, the IBVS method is applied for the dual arm manipulator on the mobile inverted pendulum. The autonomous mobile inverted pendulum is successfully demonstrated using the center of the manipulator's mass.