• Title/Summary/Keyword: a joint tracking

Search Result 298, Processing Time 0.025 seconds

Joint tracking system for butt joint welding process using eddy current sensors with the condition of no gap distance (자기장 센서를 이용한 갭간격이 없는 박판 맞대기 용접부의 용접선 추적 장치)

  • 김영선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.836-839
    • /
    • 1997
  • In recent years, much progress has been made in the automation of welding coped with a variety of highly flexible sensors. Among these sensors, only the eddy current sensor can detect the center location of the butt joint whose gap distance is zero. Thus, in this study the eddy current sensor is used to develop a robust and useful joint tracking system. The developed system is tested to qualify the performance of the system and seam tracking algorithm is proposed and two simulation are executed to show the performance of the proposed tracking algorithm.

  • PDF

A Study on the Path Constraint Error Reducing Trajectory Planning (Path Constraint한 궤적 계획법의 위치 오차 감소에 관한 연구)

  • Hwang, Seung-Jae;Park, Se-Woong;Kim, Dong-Jun;Kim, Kab-Il;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.843-845
    • /
    • 1995
  • There are a variety of trajectory and control algorithms available for robot trajectory tracking. Before using the enhanced trajectory and control algorithms to reduce the tracking error, we introduce the new method which reduces the tracking error by clipping the joint velocity. A lot of robot trajectory tracking methods are proposed to enhance the robot tracking, but irregular tracking errors are always accompanied. Up to now, these irregular tracking errors are gradually but uniformly reduced by introducing more complicated control algorithms. It is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance. By heuristic method, big tracking errors in these irregular ones are assumed mostly due to the fast moving of joint with respect to the same tracking and control method. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

A Study on Automatic Seam Tracking System Using Electro-Magnetic Sensor for Sheet Metal Arc Welding of Butt Joints (박판 맞대기 용접에서 전자기식 센서를 이용한 용접선 자동 추적 시스템에 관한 연구)

  • 유병희;김재웅
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.81-91
    • /
    • 1997
  • In this study, a magnetic sensor to make use of eddy current was developed to detect the weld seam of butt joint in the sheet metal arc welding. This system consist of the sensor device for detecting the weld line, the servo control device for driving the weld torch movement and the control unit. A signal processing was applied to smooth the output signal of the sensor. The weld joint was determined by using a 1st order differential method. To improve tracking accuracy of the system, moving average method which has an effect of proportional and weighted integral control was applied to a series of the weld joint positions obtained above. The weld line for tracking was generated by using data regeneration algorithm. Based on these results, each servo motor was controlled by pulse generator. From experimental results, it was revealed that this system has excellent detecting ability for weld line and seam tracking ability.

  • PDF

Control of an above-knee prosthesis using MR damper (MR 감쇠기를 이용한 무릎 관절 의족의 제어)

  • 김정훈;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.244-244
    • /
    • 2000
  • We proposed the above-knee prosthesis using rotary MR damper in which knee joint is semi-actively controlled by microprocessor. Dissipation torque in the knee joint can be controlled by the magnetic field which is induced by applying current to a solenoid, Tracking control of knee joint angle was tested by 3-DOF Leg simulator. The experimental results show that the proposed above-knee prosthesis system had good performance in swing phase tracking and repetitive controller in conjunction with a computed control law and PD control law, reduced RMS tracking error as the repetitions of tracking. Moreover, desired knee angle trajectory was generated based on the estimation of gait period with the gyro signal and the tracking control was performed.

  • PDF

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

Robot Path Planning Method for Tracking Error Reduction (로봇의 추적오차 감소를 위한 궤적계획방법)

  • Kim, Dong-Jun;Kim, Gap-Il;Park, Yong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.143-148
    • /
    • 2001
  • A lot of robot trajectory tracking methods are proposed to enhance the tracking error, but irregular tracking errors are always accompanied and very hard to reduce it. Up to now, these irregular tracking errors are reduced by introducing more complicated control algorithms. But, it is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance instead of using more complicated control algorithms. By the characteristics of the robot, big tracking errors of the end-effector are generated mostly due to the fast moving of joint. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Vision Sensor System for Weld Seam Tracking of I-Butt Joint with Height Variation (높이 변화가 있는 막대기 용접선 추적용 시각센서)

  • Kim Moo-Yeon;Kim Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2004
  • In this study, a visual sensor system which can detect I-butt weld joint with height variation and includes a seam tracking algorithm was investigated. Three-dimensional position of an object can be acquired by using the method of distance measurement, i.e., an optical trigonometry which results from the spatial relations between the camera, the object and the structured light by a visible laser. Effects of laser intensity and iris number for the image quality as well as object material were investigated for the optical system design. For the image processing, a region of interest is defined from the whole image and a line image of laser is drew by using the gray level difference in the image. From the drew laser line, the weld joint can be recognized in searching the biggest point position calculated from the central difference method. Through a series of welding experiments, a good tracking performance was confirmed under GMA welding.

JPDAS Multi-Target Tracking Algorithm for Cluster Bombs Tracking (자탄 추적을 위한 JPDAS 다중표적 추적알고리즘)

  • Kim, Hyoung-Rae;Chun, Joo-Hwan;Ryu, Chung-Ho;Yoo, Seung-Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.545-556
    • /
    • 2016
  • JPDAF is a method of updating target's state estimation by using posterior probability that measurements are originated from existing target in multi-target tracking. In this paper, we propose a multi-target tracking algorithm for falling cluster bombs separated from a mother bomb based on JPDAS method which is obtained by applying fixed-interval smoothing technique to JPDAF. The performance of JPDAF and JPDAS multi-target tracking algorithm is compared by observing the average of the difference between targets' state estimations obtained from 100 independent executions of two algorithms and targets' true states. Based on this, results of simulations for a radar tracking problem that show proposed JPDAS has better tracking performance than JPDAF is presented.

Joint disturbance torque analysis for robots and its application in straight line path placement (로봇의 관절외란해석을 이용한 직선궤적 위치결정)

  • ;Choi, Myuoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

Design of a User-Friendly Control System using Least Control Parameters (최소 제어 인자 도출을 통한 사용편의성 높은 제어시스템 설계)

  • Heo, Youngjin;Park, Daegil;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.67-77
    • /
    • 2014
  • An electric motor is the one of the most important parts in robot systems, which mainly drives the wheel of mobile robots or the joint of manipulators. According to the requirement of motor performance, the controller type and parameters vary. For the wheel driving motors, a speed tracking controller is used, while a position tracking controller is required for the joint driving motors. Moreover, if the mechanical parameters are changed or a different motor is used, we might have to tune again the controller parameters. However, for the beginners who are not familiar about the controller design, it is hard to design pertinently. In this paper, we develop a nominal robust controller model for the velocity tracking of wheel driving motors and the position tracking of joint driving motors based on the disturbance observer (DOB) which can reject disturbances, modeling errors, and dynamic parameter variations, and propose the methodology for the determining the least control parameters. The proposed control system enables the beginners to easily construct a controller for the newly designed robot system. The purpose of this paper is not to develop a new controller theory, but to increase the user-friendliness. Finally, simulation and experimental verification have performed through the actual wheel and joint driving motors.