• Title/Summary/Keyword: a inference

Search Result 2,840, Processing Time 0.031 seconds

Knowledge Base Construction of Ship Design Using Fuzzy Equalization and Rough Sets (퍼지균등화와 러프집합을 이용한 선박설계 지식기반 구축)

  • Suh, Kyu-Youl
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.115-119
    • /
    • 2007
  • Inference rules of the knowledge base, generated by experts or optimization, may be often inconsistent and incomplete. This paper suggests a systematic and automatic method which extracts inference rules not from experts' subject but from data. First, input/output linguistic variables are partitioned into several properties by the fuzzy equalization algorithm and each combination of their properties comes to premise of inference rule. Then, the conclusion which is the mast suitable for the premise is selected by evaluating consistent measure. This method, automatically from data, derives inference rules from experience. It is shown through application that extracts new inference rules between hull dimensions and hull performance.

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denoising, PCA and SPRT

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.483-497
    • /
    • 2001
  • In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system The PCA is used to reduce the dimension of an input space without losing a significant amount of information. The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors.

  • PDF

Fuzzy Threshold Inference of a Nonlinear Filter for Color Sketch Feature Extraction (컬러 스케치특징 추출을 위한 비선형 필터의 퍼지임계치 추론)

  • Cho Sung-Mok;Cho Ok-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.398-403
    • /
    • 2006
  • In this paper, we describe a fuzzy threshold selection technique for feature extraction in digital color images. this is achieved by the formulation a fuzzy inference system that evaluates threshold for feature configurations. The system uses two fuzzy measures. They capture desirable characteristics of features such as dependency of local intensity and continuity in an image. We give a graphical description of a nonlinear sketch feature extraction filter and design the fuzzy inference system in terms of the characteristics of the feature. Through the design, we provide selection method on the choice of a threshold to achieve certain characteristics of the extracted features. Experimental results show the usefulness of our fuzzy threshold inference approach which is able to extract features without human intervention.

  • PDF

Multisensor-Based Navigation of a Mobile Robot Using a Fuzzy Inference in Dynamic Environments (동적환경에서 퍼지추론을 이용한 이동로봇의 다중센서기반의 자율주행)

  • 진태석;이장명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.79-90
    • /
    • 2003
  • In this paper, we propose a multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using multi-ultrasonic sensor. Instead of using “sensor fusion” method which generates the trajectory of a robot based upon the environment model and sensory data, “command fusion” method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as experiments with IRL-2002. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Stabilization Control of Ball and Beam System Using Adaptive Fuzzy Inference Technique (적응 펴지 추론기법을 이용한 Ball and Beam 시스템의 안정화 제어)

  • Kim, T.W.;Kim, H.B.;Shim, Y.J.;Shon, Y.D.;Lee, J.T.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.720-723
    • /
    • 1997
  • The characteristics of ball and beam system using fuzzy inference technique can be described by fuzzy modeling. Therefore, this paper introduces a technique for fuzzy structure identification of nonlinear Input-output relation- ship using an adaptive fuzzy inference system. And the simulation result using adaptive fuzzy inference technique shows its effectiveness for fuzzy structure identification of nonlinear system.

  • PDF

Integration of OWL and SWRL Inference using Jess (Jess를 이용한 OWL과 SWRL의 통합추론에 관한 연구)

  • Lee Ki-Chul;Lee Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.875-880
    • /
    • 2005
  • OWL(Web Ontology Language) is the Ontology Standard Language and the a lot of Ontologies are being constructed in OWL. But the research on the extension of OWL is also progressing because of the limit of representation power of in OWL language. The W3C suggests the SWRL(Semantic Web Rule Language) based on the combination of OWL and RuleML(Rule Markup Language), which is improved in the representation of rule. Thus, both OWL and SWRL are used for developing ontologies. However, research on inference of ontologies written in both languages is just begun. These day, for the inference of ontologies written in both languages, ontologies and divided in to two parts. The part written in OWL and written in SWRL. For the inference of the part written in OWL, Racer, a DL based inference engine, is used and for the other part Jess, a rule-based engine, is used. In this paper, we will propose three methods for integrated inference of the OWL part and the SWRL part of ontologies using Jess and some tools for ontology inference : OWLJessKB and SWRL Factory

New Fuzzy Inference System Using a Kernel-based Method

  • Kim, Jong-Cheol;Won, Sang-Chul;Suga, Yasuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2393-2398
    • /
    • 2003
  • In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition, the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed technique.

  • PDF

An Adaptive Search Strategy using Fuzzy Inference Network (퍼지추론 네트워크를 이용한 적응적 탐색전략)

  • Lee, Sang-Bum;Lee, Sung-Joo;Lee, Mal-Rey
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.48-57
    • /
    • 2001
  • In a fuzzy connectionist expert system(FCES), the knowledge base can be constructed of neural logic networks to represent fuzzy rules and their relationship, We call it fuzzy rule inference network. To find out the belief value of a conclusion, the traditional inference strategy in a FCES will back-propagate from a rule term of the conclusion and follow through the entire network sequentially This sequential search strategy is very inefficient. In this paper, to improve the above search strategy, we proposed fuzzy rule inference rule used in a FCES was modified. The proposed adaptive search strategy in fuzzy rule inference network searches the network according to the search priorities.

Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme (퍼지-신경망 기반 고장진단 시스템의 설계)

  • Kim, Sung-Ho;Kim, Jung-Soo;Park, Tae-Hong;Lee, Jong-Ryeol;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF