• Title/Summary/Keyword: a granitic magma

Search Result 69, Processing Time 0.027 seconds

Anisotropy of Magnetic Susceptibility (AMS) of Granitic Rocks in the Eastern Region of the Yangsan Fault (양산단층 동편 화강암질암의 대자율 이방성(AMS))

  • Cho, Hyeong-Seong;Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.171-189
    • /
    • 2007
  • A study of anisotropy of magnetic susceptibility (AMS) was undertaken on Cretaceous granitic, volcanic and sedimentary rocks in the eastern region of the Yangsan fault, southeast Korea. A total of 542 independently oriented core samples collected form 77 sites were studied. The main magnetic mineral in granitic rocks is magnetite according to the magnitude of bulk susceptibility, high-temperature susceptibility variation and isothermal remanent magnetization. Both of magnetic lineation and foliation with NE-SW trends are revealed in the granitic rocks, while volcanic rocks show scattered directions and sedimentary rocks show only load foliation parallel to the bedding planes. The following evidences read to the conclusion that both magnetic fabrics in the granitic rocks have been obtained by a tectonic stress before full solidification of the magma: (i) A fully hardened granitic rocks would get hardly any fabric, (ii) Difference of the magnetic fabric trends with those of the geological structures in the granitic rocks themselves formed by brittle deformation after solidification (e.g. patterns of small-faults and joints), (iii) Kinking of biotite and undulose extinction in quartz observed under the polarizing microscope, (iv) Discordance of magnetic fabrics in the granitic rocks with those in the surrounding rocks. The NE-SW trend of the magnetic foliations suggests a NW-SE compressive stress of nearly contemporaneous with the emplacement of the granitic rocks. The compression should have caused a sinistral strike-slip movement of the Yangsan Fault considering the trend of the latter. As the age of the granitic rocks in the study area is reported to be around $60\sim70$ Ma, it is concluded that the Yangsan fault did the sinistral strike-slip movement during this time (L. Cretaceous Maastrichtian - Cenozoic Paleocene).

Trace Element and Mineral Chemistry of the Cretaceous Granites in the Southern Mungyeong Area (문경남부일대(聞慶南部一帶)에 분포(分布)하는 백악기(白堊紀) 화강암류(花崗岩類)의 미량원소(微量元素) 및 광물화학(鑛物化學))

  • Yun, Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.379-391
    • /
    • 1991
  • The studied Cretaceous granties are widely distributed at the southern Mungyeong area in the southwestern part of Ogcheon Fold Belt. From the mineralogical and geochemical compositions, it is suggested that they show the characteristics of I-type and magnetite-series and formed under the conditions of high oxygen fugacity. The mineral chemistry of plagioclase, alkali feldspar and biotite in the granites by EMPA, was revealed as albite to oligoclase, microcline to microcline perthite and orthoclase perthite, and annite compositions, respectively. The granites have the distribution patterns of enriched LREE and depleted HREE, and show Eu negative anomalies suggesting mainly due to the feldspar fractionation in the residual magma. The geochemical data of Eu, EU/$^*Eu$, Sm and Gd suggest that the granites of the area have more abundant alkali feldspar crystallization than plagioclase. From the geochemical characteristics of Sr/Ba, La/Sm vs. Ce/Yb and other trace element evidences, the granites were the late stage products of differentiation and fractionated from a homogeneous parental granitic magma.

  • PDF

Mineral Compositions of Granitic Rocks in the Yeongkwang-Naju Area (영광-나주지역에 분포하는 화강암류의 광물성분에 대한 연구)

  • Park, Jae-Bong;Kim, Yong-Jun
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.535-549
    • /
    • 2012
  • Main aspect of this study are to clarify mineral compositions on granites in Youngkwang-Naju area. These granites are is divided into four rock facies based on the geologic ages, mineralogical composition and chemical constituents, and texture : hornblende-biotite granodiorite, biotite granite, porphyritic granite and two mica granite. These granites constitude an igneous complex formed by a series of differentiation from cogenetic magma. In compressive stress field between the Ogcheon folded belt and the Youngnam massif, the foliated and undeformed granites had formed owing to heterogeneous distribution of stress. The geochemical data of study area indicate magma of these rocks would had been generated by melting in lower and middle crust. The major minerals of granitic rocks in study area are plagioclase, biotite, muscovite and hornblende. Plagioclase range in composition from oligoclase ($An_{19.3-27.7}$) to andesine ($An_{28.4-31}$), and shows normal zoning patterns, This uniformed composition indicated slow crystallization, and it is obvious that the growth of these crystal occurred before final consolidation of the magma. The Mg content of biotite are increases with increasing of $f_{O2}$ and grade of differentiation, changing from phlogopite to siderophyllite. Its $Al^{iv}$/$Al^{total}$ ratios are propertional to bulk rock alumina content. Muscovite is primary in origin with high content of $TiO_2$, and Its composition correspond to celadonitic muscovite. Hornblende indicated calc amphibole group ($(Ca+Na)_{M4}{\geq}1.43$, $Na_{M4}<0.67$). and consolidation pressure of granitic body by geobarometer of Hammerstrume and Zen show 11.3~17.2 Km.

Petrochemistry and magma process of Jurassic Boeun granodiorite in the central Ogcheon belt (중부 옥천대에 분포하는 쥬라기 보은 화강섬록암의 암석화학과 마그마과정)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.188-199
    • /
    • 1996
  • Boeun granodiorite, which intruded into the metasedimentary rocks of the Ogcheon Group, show chemical natures of metaluminous and calc-alkaline. Generating and emplacing environment of the Boeun granodiorite would have been a active continental margin. Comparing to the contemporaneous Inje-Hongcheon granodiorite in the Gyeonggi massif, the Boeun granodiorite seems likely to have formed under more immature continental arc environment. Compositional changes of major, trace and rare earth elements in granodiorite and felsic dyke are not certain to indicate crystallization differentiation. From this fact, the simple fractional crystallization model would be in question to explain the magma process which controlled the formation of the Boeun granitic mass. The model calculations for Rayleigh fractionation, fractionation with variable major-component composition, assimilation-fractional crystallization (AFC) were carried out to examine the magma process of the mass. The results of former two models do not agree with the compositional variations in the mass. The AFC model can be, however, applied to the magma process. The conditions for AFC process are (1) composition of assimilated wallrock is similar to that of primary magma. (2) assimilating rate is similar to crystallizing rate, and (3) mass of assimilated wallrock is about 10% of that of the magma. These conditions deny a possibility that the assimilated wallrock was the metasedimentary rocks of the Ogcheon Group. This indicates that after having experienced the assimilation process in deeper crust, the granodiorite magma intruded into the Ogcheon group. Every model calculating suggests that the felsic dyke was differentiated not from the granodiorite magma, but from a different source magma.

  • PDF

Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak (설악산 부근의 화강암류에 대한 지구화학 및 성인)

  • Kyoung-Won Min;Sung-Bum Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.35-51
    • /
    • 1996
  • The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

  • PDF

Petrochemical Study on the Micrographic Granite in the Wando Area (완도지역(莞島地域)에 분포하는 미문상화강암(微文象花崗岩)에 대한 암석화학적(岩石化學的) 연구(硏究))

  • Shin, In-Hyun;Nam, Ki-Sang;Kim, Hee-Nam;Park, Young-Seog;Ahn, Kun-Sang
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Petrochemical study on the micrographic granite distributed in the Wando area, the southernmost part of the Yeongdong-Kwangju depression is performed to investigate the petrogenesis and differentiation processes of the granitic magma. Polarized light microscopy for modal analyses, electron probe microanalyses of feldspars and biotite, inductively coupled plasma analyses for major and trace element contents were adopted in the study. The lithology of the study area consists of Precambrian metasediments, Mesozoic volcanic and sedimentary rocks, and micrographic granite which intrude into the former. The micrographic granite in the Wando area are distributed in the shape of a cauldron. Modal and nonnative mineral analyses of the micrographic granite fall in the area of granite and granodiorite. The chemical composition indicates that the micrographic granite is I-type and magnetite series. The micrographic granite is characterized by more than 90% of micrographic texture in volume percent. Feldspars in the micrographic granite is alkali feldspars (Or, 45~93) and plagioclases (albite to oligoclase). The biotite has a intermediate composition between phlogopite and annite solid solution. The results of the petrochemical studies indicate that the granitic magma of calc-alkaline source materials reactivated in a compressional environment at the continental margin, and then was differentiated by fractional crystallization. The micrographic granite intruded into a shallow level of the crust (5~7 km) in the late Cretaceous.

  • PDF

Geochemistry of Granites in the Southern Gimcheon Area of Korea (김천남부에 분포하는 화강암류의 지구화학)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The granites in the southern Gimcheon area can be divided into two parts, marginal hornblende biotite granodiorite (Mgd) and central biotite granodiorite to granite (Cgd). Mgd and Cgd are gray in color and display gradational contact relations and are mainly composed of coarse-grained and medium-grained rocks, respectively. Mgd has more frequent and larger mafic enclaves than Cgd, and the two granites partly show parallel foliation at thire contact with gneisses. From representative samples of the granites, K-Ar biotite ages of 197∼207 Ma were obtained. Considering the blocking temperature of biotite, it is suggested that the emplacement age of the granitic magma was probably late Triassic. The anorthite contents of plagioclases in Mgd display less variation than those of Cgd, indicating that Mgd crystallized within a narrow range of temperatures. In the Al$\_$total/-Mg diagram, the biotites from the granites plot within the subalkaline field, and the smooth slope indicates differentiation from a single magma. All amphiboles from the granites belong to magnesio-hornblende. The linear trends of major oxides, AFM and Ba-Sr-Rb indicate that Mgd and Cgd were fractionally differentiated from a single granitic magma body crystallizing from the margin inwards. The relations of modal (Qz+Af) vs. Op, K$_2$O vs. Na$_2$O, Fe$_2$ $O_3$ vs. FeO, Fe$\^$+3/(Fe$\^$+3/+Fe$\^$+2/) and K/Rb vs. Rb/Sr show that they belong to I-type and magnetite-series granitic rocks developed by the progressive melting products of fixed sources. REE data, normalized to chondrite value, have trends of enriched LREE and depleted HREE together with weakly negative Eu anomalies.

Geochemical Study of the Cretaceous Granitic Rocks in Southwestern Part of the Korean Peninsula (한반도 남서부지역에 분포하는 백악기 화강암류에 대한 지화학적 연구)

  • Wee Soo Meen;Park Se Mi;Choi Seon Cyu;Ryu In Chang
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.113-127
    • /
    • 2005
  • Cretaceous intrusive and extrusive rocks are widely distributed in the southwestern part of the Korean peninsula, possibly the result of intensive magmatism which occurred in response to subduction of the western proto-Pacific plate beneath the north-eastern part of the Eurasian plate. Geochemical and petrological study on the Cretaceous granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that the all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. Higher values of $Fe_2O_3/FeO$ of the granitic rocks in the western area suggest that the granitoids had been solidified under highly oxidizing environment. The granitic bodies in the eastern area also show higher contents of Li, Ni, Co, Sr, Cr, Sc and lower Rb and Nb compared to the those of the western area. Chondrite normalized REE patterns show generally enriched LREE and strong negative Eu anomalies in the western wet while slight to flat Eu anomalies in the east-ern area. The REE and $(La/Lu)_{CN}$ of the granites are $60{\~}499ppm$ and $8.9{\~}66$ correspond to the range of the continental margin granite. On the ANK vs. ACNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type, VAG and syn-collision granite. Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of proto-Pacific plate.

A Geochemical Study of the Alkali Granite in the Kyeomyeongsan Formation (충주지역 계명산층 내에 산출하는 알카리 화강암의 지구화학적 연구)

  • Kim, Jin-Seop;Park, Meong-Eon;Kim, Gun-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.349-360
    • /
    • 1998
  • The alkali granite occurred as small stock and dyke is distributed in the Kyeomyeongsan Formation in the vicinity of the Chungju city. Geochemical characteristics in major and trace element of alkali granite in the Kyeomyeongsan Formation indicate that the alkali granites are peralkaline and have similar geochemical features to the A-type alkali granite. The rock enriched in HFSE such as Zr, Nb, Y, REE etc. According to the discrimination diagram the alkali granites mostly belong to the within-plate granite field, and to the $A_1$ group of A-type granite. This suggests that they might be emplaced in a extentional rift environment. The alkali granites are characterized by remarkably high total REE content, and enriched, relatively flat to somewhat HREE-depleted patterns with large negative Eu anomaly. The Sm-Nd age of the alkali granite is $338{\pm}30Ma$ with ${\varepsilon}_{Nd(t)}$ beings -7.3 to -8.5. On the basis of the geochemical studies the source magma was derived from a enriched mantle-like source and had a few or clearly interaction with sialic continental crust. In conclusion, the alkali granitic rock of the Kyeomyeongsan Formation might be formed from the high F peralkaline magma that was emplaced in continental rift environment, and generated at the early Carboniferous.

  • PDF

Geochemical Studies on the Petrogenesis of Jurassic Peraluminaous Granitic Rocks in the area of Gwangdeoksan in the Northern Gyeonggi Massif (경기육괴 북부 광덕산 일대에 분포하는 쥐라기 고알루미나 화강암질암의 성인에 대한 지화학적 연구)

  • Han, Chung Hee;Jeon, Hye Su;Park, Young-Rok
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.325-337
    • /
    • 2020
  • The Jurassic granitic rocks in the area of Gwangdeoksan located along the boundary between Hwacheon and Cherwon in northern Gyeonggi Massif consist of two-mica granite, garnet-bearing two-mica granite, mica-granite, and porphyritic biotite granite. These granitic rocks are calc-alkaline series and plotted in peraluminious domain in A/CNK vs. A/NK diagram. Petrographical and geochemical data indicate that the porphyritic biotite granite which intruded at the last period originated from distinct parental magma from two-mica granite, garnet-bearing two-mica granite, and mica-granite. On the basis of Rb/Sr vs. Rb/Ba diagram and Al2O3/TiO2 vs. CaO/Na2O, it is inferred the porphyritic biotite granite originated from protolith with less pelitic composition than 3 other granitic rocks. The enriched values of lithophile elements of Cs, Rb, and Ba and negative trough of Nb, P, Ti on spider diagram suggest that the peraluminous Jurassic granitic rocks in Gwangdeoksan area formed in subduction tectonic environment. Whole-rock zircon saturation thermometer indicates that the granitic rocks in the study area were melted at 692-795℃.