• Title/Summary/Keyword: a filtered-X LMS algorithm

Search Result 106, Processing Time 0.025 seconds

A Robustness Improvement of Adjoint-LMS Algorithms for Active Noise Control (능동소음제어를 위한 Adjoint-LMS 알고리즘의 강인성 개선)

  • Moon, Hak-ryong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.171-177
    • /
    • 2016
  • Noise problem that occurs in living environment is a big trouble in the economic, social and environmental aspects. In this paper, the filtered-X LMS algorithms, the adjoint LMS algorithms, and the robust adjoint LMS algorithms will be introduced for applications in active noise control(ANC). The filtered-X LMS algorithms is currently the most popular method for adapting a filter when the filter exits a transfer function in the error path. The adjoint LMS algorithms, that prefilter the error signals instead of divided reference signals in frequency band, is also used for adaptive filter algorithms to reduce the computational burden of multi-channel ANC systems such as the 3D space. To improve performance of the adjoint LMS ANC system, an off-line measured transfer function is connected parallel to the LMS filter. This parallel-fixed filter acts as a noise controller only when the LMS filter is abnormal condition. The superior performance of the proposed system was compared through simulation with the adjoint LMS ANC system when the adaptive filter is in normal and abnormal condition.

Active Vibration Control of Flexible Plate using Piezo Ceramic (피에조 세라믹을 이용한 유연한 평판의 능동진동제어)

  • 박수홍;김홍섭;홍진석;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.434-439
    • /
    • 1997
  • This paper presents the active control of a flexible plate vibration. The plate was excited by white noise point force and the control was performed by one or two piezo ceramic actuator bonded to the surface of the plate. An adaptive controller based on filtered-x or multiple filtered-x LMS algorithm was used and the controller was defined by minimizing the square of the response of error sensor. In the experiment, PZT sensor was used as an error sensor while white noise was applied as a disturbance. In the case of multiple channel control, more than 22 dB of vibration reduction was achieved. Results indicate that the vibration of a flexible plate could be controlled effectively when the piezo ceramic actuator was used with multiple filtered-x LMS algorithm.

  • PDF

Narrowband Active Control of Noise in Thermal Power Plants (협대역 능동소음 제어기법을 이용한 화력발전소 소음제어)

  • 남현도;서성대;황정현
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.34-40
    • /
    • 2001
  • In this paper, a narrowband active noise control system to reduce the noise in thermal power plants is proposed. The narrowband active noise control system contains rectangular wave generator and has a multi channel feed forward adaptive algorithms which uses the adjoint LMS algorithm. Although the effectiveness have been proven in the filtered-X LMS broadband active noise control system, this algorithm has much more computational complexity than that of narrowband active noise control system. The proposed active control system that uses the adjoint LMS algorithm, compared to the previous broadband active noise control system, not only is more effective in controlling narrowband noise but also has a more stable structure. Adaptive filter contains the FIR structure and IIR structure for primary and secondary path models. The simulation proves the effectiveness of the proposed algorithm.

  • PDF

A Study on the Active Noise Control Algorithm for Rreducing the Computation Rime (계산속도를 증가시키기 위한 능동소음제어 알고리즘에 대한 연구)

  • 박광수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.699-703
    • /
    • 1993
  • When the error path can be modeled as a pure delay, an adaptive algorithm for slowly time varying system is proposed to minimize the sound pressure level. This algorithm makes it possible to use the fittered-x LMS algorithm with on-line delay modeling of the error path. Another simple adaptive algorithm for pure tone noise is proposed which eliminates the cross term in the multiple error filtered-x LMS algorithm.

  • PDF

A single sensor based active reflection control system using FxLMS algorithm (FxLMS를 이용한 단일 센서기반 능동 반향음 제어 시스템)

  • Kim, Jaepil;Ji, Youna;Park, Young cheol;Seo, Young soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • This paper presents an active acoustic-reflection control algorithm based on a single sensor. The proposed algorithm operates in a system comprising a single sensor located nearby the reflective surface and a control transducer mounted on the reflective surface. First, the incident and reflected acoustic signals are separated from the sensor signal, and a control signal is generated using the separated signals. For the signal separation, the proposed algorithm requires the response of the reflection path which is estimated from the acoustic response between an external sound source and the sensor. Finally, the control filter is adjusted using the FxLMS (Filtered-x Least Mean Square) algorithm. To verify the effectiveness of the proposed algorithm, it was implemented in real time using a DSP (Digital Signal Processing) board, and the experimental results obtained in one-dimensional air-acoustic environment show that the reflections of the 1 kHz burst can be reduced by 11.6 dB.

Design of a New VSS-Adaptive Filter for a Potential Application of Active Noise Control to Intake System (흡기계 능동소음제어를 위한 적응형 필터 알고리즘의 개발)

  • Kim, Eui-Youl;Kim, Byung-Hyun;Kim, Ho-Wuk;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.146-155
    • /
    • 2012
  • The filtered-x LMS(FX-LMS) algorithm has been applied to the active noise control(ANC) system in an acoustic duct. This algorithm is designed based on the FIR(finite impulse response) filter, but it has a slow convergence problem because of a large number of zero coefficients. In order to improve the convergence performance, the step size of the LMS algorithm was modified from fixed to variable. However, this algorithm is still not suitable for the ANC system of a short acoustic duct since the reference signal is affected by the backward acoustic wave propagated from a secondary source. Therefore, the recursive filtered-u LMS algorithm(FU-LMS) based on infinite impulse response(IIR) is developed by considering the backward acoustic propagation. This algorithm, unfortunately, generally has a stability problem. The stability problem was improved by using an error smoothing filter. In this paper, the recursive LMS algorithm with variable step size and smoothing error filter is designed. This recursive LMS algorithm, called FU-VSSLMS algorithm, uses an IIR filter. With fast convergence and good stability, this algorithm is suitable for the ANC system in a short acoustic duct such as the intake system of an automotive. This algorithm is applied to the ANC system of a short acoustic duct. The disturbance signals used as primary noise source are a sinusoidal signal embedded in white noise and the chirp signal of which the instantaneous frequency is variable. Test results demonstrate that the FU-VSSLMS algorithm has superior convergence performance to the FX-LMS algorithm and FX-LMS algorithm. It is successfully applied to the ANC system in a short duct.

Active Noise Control of Induction Motor using Co-FXLMS Algorithm (Co-FXLMS 알고리즘을 이용한 유도전동기의 능동소음제어)

  • Kim, Young-Min;Nam, Hyun-Do;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, the active noise control experiment has been performed using induction motor noises. While the noises were measured, a induction motor was operated in different speed. For the simulation of ANC(Active Noise Control), test-bed is composed a multi-channel ANC system was constructed. In order to compare the control performance, we performed noise reduction simulations of ANC by Co-FXLMS algorithm and FXLMS algorithm. Through the simulation results, we confirmed that convergence performance and noise decrease effect of the proposed Co-FXLMS algorithm have been improved from existing FXLMS algorithm.

Simulation of Active Noise Control on Harmonic Sound (복수조화음에 대한 능동소음제어 시뮬레이션)

  • Kwon, O-Cheol;Lee, Gyeong-Tae;Lee, Hae-Jin;Yang, In-Hyung;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.737-742
    • /
    • 2007
  • The method of the reducing duct noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequencies (below 500Hz) and is limited by the space. On the other hand, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases slightly so it may delay the convergence time when the FXLMS algorithm is applied to the active control of duct noise. Thus the Co-FXLMS algorithm was developed to improve the control performance in order to solve this problem. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Co-FXLMS algorithm is presented in comparison with the FXLMS algorithm. Simulation results show that active noise control using Co-FXLMS is effective in reducing duct noise.

  • PDF

Development of Moving Bandpass Filter for Improving Control Performance of Active Intake Noise Control under Rapid Acceleration (급가속 흡기계의 능동소음제어 성능향상을 위한 Moving Bandpass filter 개발)

  • Jeon, Ki-Won;Oh, Jae-Eung;Lee, Choong-Hui;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1016-1019
    • /
    • 2004
  • The study of the noise reduction of an automobile has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. The method of the reduction of the induction noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the LMS (Least-Mean-Square) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm goes bad when the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to this problem, the modified FXLMS algorithm using Moving Bandpass Filter was proposed. In this study, MBPF was implemented and use ANC for automotive intake under revived rapidly accelerated driving conditions and it was verified its performance.

  • PDF