• Title/Summary/Keyword: a fiber sensor

Search Result 1,030, Processing Time 0.025 seconds

Humidity Sensor Using Polyimide Film Coated Fiber Bragg Grating (폴리이미드가 코팅된 광섬유 브래그 격자를 이용한 습도센서)

  • Jae Chang Yang;Gun Pyo Kim;Kwang Taek Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.594-597
    • /
    • 2023
  • We have proposed and demonstrated a fiber optic RH (relative humidity) sensor based on fiber Bragg grating covered with a polyimide film. As the polyimide film absolves the moisture in the air, its volume expands. As a result, the grating period of the FBG (fiber Bragg grating) covered with a polyimide film becomes wide and the Bragg wavelength is shifted. The sensor is implemented by fixing a 30 ㎛ thickness polyimide film on the surface of an optical fiber grating using an adhesive, and the characteristics of the device according to humidity are analyzed. The fabricated FBG RH sensor showed a high sensitivity of 0.0186 nm/RH% and a wide measurement range from 30% to 90%. The influence of environmental temperature on the characteristics of the RH sensor was also measured and analyzed. The feasibility of commercialization is presented.

Arc-Flash Detection Sensor Based on Surface Coupling of Plastic Optical Fiber (플라스틱 광섬유 표면 입사 현상을 이용한 아크플래시 검출 광센서)

  • Jeong, Hoonil;Kim, Myoung Jin;Kim, Young Ho;Kim, Youngwoong;Rho, Byung Sup
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.208-212
    • /
    • 2016
  • In this work, a loop sensor for Arc-Flash detections has been developed in order to trip a circuit breaker within 2.5 ms after an Arc-Flash event. For an efficient capturing of the flash light, plastic optical fibers, where light attenuations are larger than those in silica-based ones, with different diameters and surface conditions were utilized. The performance was comparatively analyzed with those of a point sensor and a commercialized product. The point sensor module was designed for hemisphere-like capturings of Arc-Flashes larger than 3 kA at 2 meters from the sensor. On the other hand, the loop sensor allowed 360-degree-detections around the fiber axis and the measurement range was dependent on the length of the fiber connected to the sensor module. The trip-level-dependent brightness measurement results showed that the fabricated point sensor and loop sensor satisfied a brightness condition, 10~40 klux, and the responses of the system to Arc-Flashes were completed within 2.5 ms.

Development of Optical Fiber Coupled Displacement Probe Sensor with a New Compensation Method (보상법을 적용한 광섬유 변위센서의 개발)

  • ;;;P. Sainsot;L. Flamand
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.27-32
    • /
    • 2002
  • The intensity modulated type (reflective method) optical fiber sensor is a well -known method and widely applied to the displacement measurements and other industrial purposes. This type sensor has the advantages of relatively cheap cost, small sensor size and easiness of operation. The sensitivity of the sensor is very dependent of several error terms; the variation in the intensity of the light source and the changes in the surface reflectivity of the object. An optical fiber coupled displacement probe with a new compensation method is presented in this paper. The proposed displacement sensor can measure the displacements of the target surface independent of surface reflectivity error that is caused by the materials and surface processing grade.

Implantation of portable hydrogen alarm system based on palladium coated single mode optical fiber sensor (팔라듐이 코팅된 단일모드 광섬유 센서를 이용한 수소 경보 시스템 구현)

  • Mun, Nam-Il;Yang, Byung-Cheol;Kim, Kwang-Taek;Kim, Tae-Un
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.269-273
    • /
    • 2009
  • In this paper, a study on a portable hydrogen alarm system based on the palladium coated single mode fiber sensor has been reported. The fabricated hydrogen sensor exhibited 0.14 dB, 0.41 dB and 0.54 dB optical intensity variation when it was exposed by the nitrogen and hydrogen mixed gas containing 0.5 %, 1 % and 4 % of the hydrogen concentration, respectively. The fabricated sensor exhibited 20 second of response time and 120 second of recovery time for 4 % hydrogen containing gas. The fiber optics layout and software algorithm for detection of hydrogen leakage have been presented. The implanted portable hydrogen alarm system successfully generated an alarm signal when a 4 % hydrogen containing gas was leaked out.

Cure real monitering sensor for UV curable thin epoxy film based on side-polished single mode fiber

  • Kim, Kwang-Taek;HwangBo, Sueng;Kang, Yong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.254-258
    • /
    • 2007
  • A novel cure sensor based on the side-polished single mode fiber has been proposed and demonstrated. Two different UV curable epoxies were used to verify the feasibility of the side-polished single mode fiber as a high sensitivity cure sensor. The volume change of the epoxy by UV curing results in a corresponding change of the refractive index. The sensor can be used to monitor the curing process, the refractive index variation and the volume change of epoxy in real time during the UV curing process. In addition, small birefringence of the epoxy film can be detected using the sensor.

A Stability Analysis of Fiber-Optic Current Sensor about a Mechanical Deformation Using by Faraday Rotator Class Fiber Sensor Coil (Faraday Rotator Glass 광섬유 센서코일을 이용한 전류센서의 기계적 변형에 대한 안정도 분석)

  • Kim, Kee-Hyuck;Song, Min-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.53-57
    • /
    • 2004
  • The stabilization of fiber-optic current sensor has been achieved by using a broadband light source and a Faraday Rotator Glass fiber sensor coil. The very low Photo-elastic constant of the fiber suppressed output variations within ${\pm}0.4[%]$ when mechanical disturbance was applied to the sensor coil. Noise characteristics, with different light sources, have also been analyzed, which experimentally proved that the wider bandwidth source showed the better noise performance.

  • PDF

Multi-Point Optical Fiber Grating Strain Sensor System (광섬유 격자 다중화 스트레인 센서 시스템)

  • Lee, Yong-Wook;Jung, Jae-Hoon;Chung, Seung-Hwan;Lee, Byoung-Ho;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.147-151
    • /
    • 2001
  • An optical fiber sensor is capable of nondestructive measurement of a structure and it has an advantage of the immunity to electromagnetic interference because light is not affected by electromagnetic wave. In addition, if optical fibers are buried in an object like a concrete, this sensor tan analyze defects and physical status of the object without disassembling it. Especially, the fiber Bragg grating sensor is a promising optical fiber sensor capable of nondestructive test of such an object. A fiber Bragg grating has the characteristics of reflecting or blotting light of a specific wavelength. If we apply physical quantity like strain to the fiber Bragg grating, the center wavelength of the reflected light is shifted and then we can find the physical quantity applied to the fiber Bragg grating by measuring the center wavelength shift of the reflected light. The fiber Bragg grating sensor capable ot static and dynamic strain measurement is being used in health-monitoring of buildings, structures, etc. Recently increasing is interest in dynamic strain measurement inevitable to the civil structures such as roads and bridges. In this study we implemented the optical fiber sensor system which can measure dynamic strain at multiple points using Fabry-Perot wavelength demodulation. And we measured the static and dynamic strain using this sensor system with a test structure(cantilever). Measurement results were similar to those obtained with the conventional electrical measurement methods.

  • PDF

Damage Detection of Fiber-Metal Laminates Under Axial and Indentation Load (섬유-금속 적층판의 인장 및 압입 하중에서의 손상감지)

  • Yang, Yoo-Chang;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.370-375
    • /
    • 2003
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile and indentation test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Damage and Failure Detection of Fiber-Metal Laminates Under Indentation Load (섬유-금속 적층판의 압입 하중에서의 손상 및 파손 검출)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.42-45
    • /
    • 2003
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Indentation test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

  • Kim, Hyunjin;Song, Minho
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.312-316
    • /
    • 2013
  • A novel fiber-optic sensor system is suggested in which fiber Bragg grating sensors are demodulated by a wavelength-sweeping fiber laser source and a spectrometer. The spectrometer consists of a diffraction grating and a 512-pixel photo-diode array. The reflected Bragg wavelength information is transformed into spatial intensity distribution on the photo-diode array. The peak locations linearly correspond to the Bragg wavelengths, regardless of the nonlinearities in the wavelength tuning mechanism of the fiber laser. The high power density of the fiber laser enables obtaining high signal-to-noise ratio outputs. The improved demodulation characteristics were experimentally demonstrated with a fiber Bragg grating sensor array with 5 gratings. The sensor outputs were in much more linear fashion compared with the conventional tunable band-pass filter demodulation. Also it showed advantages in signal processing, due to the high level of photo-diode array signals, over the broadband light source system, especially in measurement of fast varying dynamic physical quantities.