• Title/Summary/Keyword: a extrusion

Search Result 1,459, Processing Time 0.024 seconds

COMBINED FORWARD-BACKWARD EXTRUSION WITH REVERSE RAM MOTION -APPLICATION TO FORMING OF GEAR-

  • Otsu M.;Hayashida D.;Osakada K.;Hanami S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.158-161
    • /
    • 2003
  • Extrusion of forward-gear and backward-rod by combined extrusion with controlling the extrusion velocity using a counter tool is studied. In the combined forward-backward extrusion with controlling extrusion velocity, only parts with short gear can be formed. To obtain longer gear parts, extrusion with reverse ram motion is carried out after the combined forward-backward extrusion process. In this method, combined forward-backward extrusion is carried out until excessive extrusion length is attained and then, the motion of the punch is stopped and the counter tool is moved in the inverse direction and returned to the position for obtaining the desired extrusion length. The experiment is carried out by using lead for billets as a model material. With reverse ram motion, longer gear teeth without under-filling defect can be formed than that by only combined extrusion with controlling extrusion velocity.

  • PDF

Effect of the Design Parameter for Internal Spline Forming Using the Tube (중공축 내접 스플라인 성형을 위한 설계변수의 영향)

  • Wang, C.B.;Lim, S.J.;Park, Y.B.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.512-517
    • /
    • 2006
  • In this paper, the cold extrusion process for internal spline forming using a thin and long tube has been analyzed by using a rigid plastic finite element code. The internal spline consists of 10 tooths. The cold extrusion process has been focused on the comparisions of load-stroke relation and filling states of the teeth according to design parameters. The design parameters involve extrusion ratio, extrusion angle and friction factor. The internal spline forming can cause the buckling and folding during the cold extrusion process because of using a thin and long tube. The optimum design parameters have been obtained through rigid-plastic finite elements analysis. The extrusion ratio and extrusion angle have great effects on the deformation characteristics of the cold extrusion process.

An Experimental Anlysis in Non-Circular Tube Extrusion Using the Effective Extrusion Ratio (비원형 중공 압출의 유효 압출비를 이용한 실험적 해석)

  • 한철호;김상화
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.520-526
    • /
    • 1999
  • In this study a practical formula based on the experime수 랙 the estimation of load in the non-circular tube extrusion with the mandrel is proposed by using the effective extrusion ratio. Through some experiments for the several shaped sections, the coefficients of the empirical equation are determined by ticine as a model material at room temperature. The proposed empirical formula for the estimation of extrusion load will be applicable to the non-steady state as well as steady state for the extrusion of various shaped tubes from hollow billets.

  • PDF

Unsteady State Analysis of Al Tube Hot Extrusion by A Porthole Die (포트홀 다이에 의한 Al 튜브의 비정상상태 열간 압출 공정 해석)

  • 조형호;이상곤;박종남;김병민
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.311-318
    • /
    • 2001
  • Porthole die extrusion has a great advantage in the forming of long hollow section tubes. It is difficult to produce long hollow section tubes with complicated section by the conventional extrusion process with a mandrel on the stem Because of the limit of the length of mandrel and the complexity of cross section. Porthole die extrusion is affected by many parameters, such as extrusion ratio, extrusion speed, die geometry, porthole number, bearing length etc. Up to now, most of studies about porthole die extrusion have been investigated by experiments or steady state FE-analysis. However, in this paper, porthole die extrusion is analysed by the unsteady state 3D FE-simulation. And the result of unsteady state analysis is compared with the experimental result. Also, the surface state of extruded tubes are examined for the various process conditions.

  • PDF

The Direct Extrusion of Copper Clad Aluminum Composite Materials by Using the Conical Dies (원추형 다이를 이용한 Cu-Al 층상 복합재료의 직접압출)

  • Yun, Yeo-Gwon;Kim, Hui-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1541-1550
    • /
    • 2001
  • This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. Composite materials consist of two or more different material layers. Copper clad aluminum composite materials are being used fur economic and structural purposes and the development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important, It is necessary to know the conditions in which successful uniform extrusion ,and sound cladding may be carried out without any defects in the direct extrusion. There are several variables that have an influence on determining a sound clad extrusion. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios and semi-cone angles of die. Subsequently, the microscopic inspection of interface bonding is carried out for extruded products. By measuring hardness, along extrusion way of products, a variation of hardness has been discussed. Proportional flow state has been considered by measuring radius ratio of Cu sleeve and Al core before and after extrusion.

Development of Al Bumper Back Beam by Using Curvature Extrusion Process (곡률압출공정을 이용한 알루미늄 Bumper Back Beam 개발)

  • Lee, Sang-Kon;Jo, Young-June;Kim, Byung-Min;Park, Sang-Woo;Oh, Kae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.502-507
    • /
    • 2009
  • Curvature extrusion process has several advantages in comparison to the conventional extrusion and bending process. In the curvature extrusion, the extruded part is directly bent during extrusion. Therefore, it does not need additional bending process after extrusion. In the curvature extrusion process, it is possible to produce curved extruded products that have a constant or various curvatures. It is essential that we predict the curvatures of the extruded product to meet the required curvatures. This paper proposed a theoretical model that can predict the curvature of extruded product produced by the curvature extrusion process. Using the proposed model the movement of guide tool that causes the bending of extruded product was controlled to produce the required curved automotive Al bumper back beam. The effectiveness of the proposed prediction model and the movement of guide tool were verified by the FE analysis and curved extrusion experiment.

A Study on Fabrication of Al-Cu alloy bar by Melt-extrusion Process (용탕압출법에 의한 Al-Cu 합금 선재의 제조에 관한 연구)

  • Joo, Dae-Heon;Lee, Byoung-Soo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.331-339
    • /
    • 2004
  • Melt-extrusion process, a metallic melt poured and solidified up to semisolid state in the container can be directly extruded through the die exit to form a product of bar shape without other intermediate processes. In this study, the fabrication characteristics of the process were evaluated with various process parameters, such as preheating temperature of extrusion dies, extrusion temperature and extrusion ratio. AI-Cu alloys were successfully extruded after squeezing out of liquid during melt-extrusion with smaller force compared to the solid extrusion. Soundly AI-Cu alloy bar was fabricated at the preheating temperature of $500{\sim}520^{\circ}C$. The range of extrusion temperature for soundly melt-extruded AI-Cu alloy bar was increased with increasing extrusion ratio. Mechanical properties of melt-extruded AI-Cu alloy bars were found change with Cu content of the melt-extruded bars due to the occurrence of segregation. The various extrusion temperature yielded equiaxed structure with a grains size about 200 ${\mu}m$.

Thixo Extrusion and Reheating Characteristics of Semi Solid A356 Alloy (반응고 A356 합금의 재가열 특성 및 반용융 압출)

  • Kim, Dae-Hwan;Jung, Hyun-Ju;Shim, Sung-Yong;Lim, Su-Gun;Lee, Sang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • This work presents the results of a thixo-extrusion process applied to aluminum alloy and and reheating characteristics of semi-solid A356 Alloy using have been discussed. The reheating experiment was performed using an electric resistance furnace and multi-stage heating for uniform reheating. The thixo-extrusion was performed at the optimal reheating conditions of the semi-solid A356 alloy, the the extrusion conditions were an extrusion ratio of 33 and ram speed of 6 mm/sec. The results showed that the thixo-extrusion of semi-solid A356 alloy fabricated by the cooling slope reduced the extrusion pressure by 180% in comparison with hot extrusion, and that a sound extrusion could be obtained in spite of the same extrusion ratio and strain rate.

Thixo-extrusion of Semi Solid 7075 Aluminum Alloys and Mechanical Properties of The Extrudates (반응고 7075 알루미늄 합금의 반용융 압출 및 압출재의 기계적 특성)

  • Choi, Tae-Young;Kim, Dae-Hwan;Kim, Soo-Bae;Shim, Sung-Young;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.34 no.3
    • /
    • pp.87-93
    • /
    • 2014
  • Thixo-extrusion of semi-solid 7075 aluminum alloy and the mechanical properties of its extrudates were investigated. The semisolid alloy was prepared by a cooling slope cast. In other to perform thixo-extrusion, semi-solid 7075 aluminum alloy billets were reheated at the reheating conditions reported in a previous study. The maximum extrusion pressure in thixo-extrusion was 615MPa. This was lower than that of conventional hot extrusion ($P_{max}=940MPa$) at the same extrusion conditions due to the increased fluidity of the alloy billet in the semi-solid state. The values of Rockwell hardness (scale B) at the extrusion direction of the as thixoextruded bar were 48~53HRB and the difference in Rockwell hardness between the transverse direction and the extrusion direction was 5HRB or less. The results show that thxio-extrusion of semi-solid 7075 Al alloy improves the workability and anisotropic with the extrusion direction compared with hot extrusion of the conventional alloy.

Effect of Extrusion Conditions on Microstructures and Mechanical Properties of AM80 Magnesium Alloys (AM80 마그네슘 합금의 미세조직 및 기계적 특성에 대한 압출조건의 영향)

  • Lee, S.K.;Kim, D.H.;Kim, D.H.;Lim, S.G.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.379-385
    • /
    • 2018
  • This study investigated the effect of extrusion conditions on microstructures and mechanical properties of AM80 magnesium alloys. The billets of magnesium alloy used for hot extrusion were prepared by permanent mold casting method, and its extrusion was hot direct extrusion with different extrusion conditions. The results of microstructural analysis showed that the main phases in the as-casted alloys were ${\alpha}-Mg$, ${\beta}-Mg_{17}Al_{12}$, and lamella $Mg_{17}Al_{12}$. Hot extrusion results, The tensile strength of the most soundly manufactured extruded bars (extrusion temp: $350^{\circ}C$, extrusion ratio: 27:1, ram speed: 2mm/s) was approximately 327MPa at room temperature. The increase in the mechanical properties of hot-extruded alloys was as a result of grain refinement by dynamical recrystallization during hot extrusion.