This study investigates the factors contributing to price fluctuations in the shipscrapping market, the final stage in a vessel's life cycle. Shipping companies make decisions on ship dismantling based on factors such as declining freight rates, increasing vessel age leading to higher costs, or compliance with new environmental regulations. Utilizing the FMOLS (Fully Modified Ordinary Least Squares) and VECM (Vector Error Correction Model) methodologies, the research explores the long-term elasticities of factors influencing shipscrapping prices and examines short-term causal relationships. Using a time series dataset spanning from December 2015 to April 2023, covering a total of 90 months, the study focuses on the shipscrapping prices of Capesize vessels in India and Bangladesh, which constitute a significant portion of the shipbreaking market. The findings indicate that, in the long term, shipscrapping prices are closely related to global scrap prices, 20-year-old secondhand Capesize vessel prices, newbuilding prices, and exchange rates. In terms of short-term causal relationships, an increase in global scrap prices induces a rise in shipscrapping prices, while the remaining variables do not contribute to such increases. Specifically, an escalation in shipscrapping prices is associated with increased prices of 20-year-old secondhand vessels, newbuilding prices, and exchange rates. However, the other variables do not show a significant influence on short-term increases in shipscrapping prices.
Ji, Gwang-Su;Yu, Dae-Heon;Lee, Seong-Gu;Kim, Jae-Hyu;Ji, Yeong-Hun
The Journal of Korean Society for Radiation Therapy
/
v.8
no.1
/
pp.19-27
/
1996
I. Project Title A Study of Brachytherapy for intraocular tumor II. Objective and Importance of the project The eye enucleation or external-beam radiation therapy that has been commonly used for the treatment of intraocular tumor have demerits of visual loss and in deficiency of effective tumor dose. Recently, brachytherapy using the plaques containing radioisotope-now treatment method that decrease the demerits of the above mentioned treatment methods and increase the treatment effect-is introduced and performed in the countries, Our purpose of this research is to design suitable shape of plaque for the ophthalmic brachytherapy, and to measure absorbed doses of Ir-192 ophthalmic plaque and thereby calculate the exact radiation dose of tumor and it's adjacent normal tissue. III. Scope and Contents of the project In order to brachytherapy for intraocular tumor, 1. to determine the eye model and selected suitable radioisotope 2. to design the suitable shape of plaque 3. to measure transmission factor and dose distribution for custom made plaques 4. to compare with the these data and results of computer dose calculation models IV. Results and Proposal for Applications The result were as followed. 1. Eye model was determined as a 25mm diameter sphere, Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15mm, 17mm and 20mm in diameter, and 1.5mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ${\pm}10\%$ and distance deviations are within 0.4mm Maximum error is $-11.3\%$ and 0.8mm, respectively. As a result of it, we can treat the intraocular tumor more effectively by using custom made gold plaque and Ir-192 seeds.
Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
Journal of The Korean Society of Agricultural Engineers
/
v.61
no.6
/
pp.111-121
/
2019
Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.
This study is to estimate soil moisture (SM) using Sentinel-1A/B C-band SAR (synthetic aperture radar) images and Multiple Linear Regression Model(MLRM) in the Yongdam-Dam watershed of South Korea. Both the Sentinel-1A and -1B images (6 days interval and 10 m resolution) were collected for 5 years from 2015 to 2019. The geometric, radiometric, and noise corrections were performed using the SNAP (SentiNel Application Platform) software and converted to backscattering coefficient of VV and VH polarization. The in-situ SM data measured at 6 locations using TDR were used to validate the estimated SM results. The 5 days antecedent precipitation data were also collected to overcome the estimation difficulty for the vegetated area not reaching the ground. The MLRM modeling was performed using yearly data and seasonal data set, and correlation analysis was performed according to the number of the independent variable. The estimated SM was verified with observed SM using the coefficient of determination (R2) and the root mean square error (RMSE). As a result of SM modeling using only BSC in the grass area, R2 was 0.13 and RMSE was 4.83%. When 5 days of antecedent precipitation data was used, R2 was 0.37 and RMSE was 4.11%. With the use of dry days and seasonal regression equation to reflect the decrease pattern and seasonal variability of SM, the correlation increased significantly with R2 of 0.69 and RMSE of 2.88%.
Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.
One of the applications of geomagnetic paleo-secular variation (PSV) is the age dating of archeological remains (i.e., the archeomagnetic dating technique). This application requires the local model of PSV that reflects non-dipole fields with regional differences. Until now, the tentative Korean paleosecular variation (t-KPSV) calculated based on JPSV (SW Japanese PSV) has been applied as a reference curve for individual archeomagnetic directions in Korea. However, it is less reliable due to regional differences in the non-dipole magnetic field. Here, we present PSV curves for AD 1 to 600, corresponding to the Korean Three Kingdoms (including the Proto Three Kingdoms) Period, using the results of archeomagnetic studies in the Korean Peninsula and published research data. Then we compare our PSV with the global geomagnetic prediction model and t-KPSV. A total of 49 reliable archeomagnetic directional data from 16 regions were compiled for our PSV. In detail, each data showed statistical consistency (N > 6, 𝛼95 < 7.8°, and k > 57.8) and had radiocarbon or archeological ages in the range of AD 1 to 600 years with less than ±200 years error range. The compiled PSV for the initial six centuries (KPSV0.6k) showed declination and inclination in the range of 341.7° to 20.1° and 43.5° to 60.3°, respectively. Compared to the t-KPSV, our curve revealed different variation patterns both in declination and inclination. On the other hand, KPSV0.6k and global geomagnetic prediction models (ARCH3K.1, CALS3K.4, and SED3K.1) revealed consistent variation trends during the first six centennials. In particular, the ARCH3K.1 showed the best fitting with our KPSV0.6k. These results indicate that contribution of the non-dipole field to Korea and Japan is quite different, despite their geographical proximity. Moreover, the compilation of archeomagnetic data from the Korea territory is essential to build a reliable PSV curve for an age dating tool. Lastly, we double-check the reliability of our KPSV0.6k by showing a good fitting of newly acquired age-controlled archeomagnetic data on our curve.
For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.
Objective: Evaluation of individual growth is important in orthodontics. The aim of this study was to develop a convenient software that can evaluate current growth status and predict further growth. Methods: Stature data of 2 to 20 year-old Koreans (4893 boys and 4987 girls) were extracted from a nationwide data. Age-sex-specific continuous functions describing percentile growth curves were constructed using natural cubic spline function (NCSF). Then, final stature prediction algorithm was developed and its validity was tested using longitudinal series of stature measurements on randomly selected 200 samples. Various accuracy measurements and analyses of errors between observed and predicted stature using NCSF growth curves were performed. Results: NCSF growth curves were shown to be excellent models in describing reference percentile stature growth curie over age. The prediction accuracy compared favorably with previous prediction models, even more accurate. The current prediction models gave more accurate results in girls than boys. Although the prediction accuracy was high, the error pattern of the validation data showed that in most cases, there were a lot of residuals with the same sign, suggestive of autocorrelation among them. Conclusion: More sophisticated growth prediction algorithm is warranted to enhance a more appropriate goodness of model fit for individual growth.
Transactions of the Korean Society of Mechanical Engineers B
/
v.35
no.3
/
pp.279-285
/
2011
We perform a numerical study to determine the time of onset of natural convection in a transient hot wire (THW) device for measuring the thermal conductivity of nanofluids. The samples used in this simulation are water-based $Al_2O_3$ nanofluids with volume fractions of 1%, 4%, and 10%, and the properties are calculated by theoretical models and experimental correlations. The THW apparatus using coated wire is modeled by the control-volume-based finite difference method, and the start of natural convection is determined by observing the temperature rise of the wire under a gravity field. The onset time is 11.5 s for water and 41.6 s for water-based $Al_2O_3$ nanofluids predicted by Maxwell thermal conductivity model with a 10% volume fraction. We confirm that the onset time of natural convection of nanofluids in the cylinder increases with the nanoparticle volume fraction. We suggest a correlation for predicting the onset time on the basis of the numerical results. Finally, it is shown that the measurement error due to natural convection is negligible if the measurement using the transient hot wire method is completed before the onset of natural convection in the base fluid.
Berzaghi, Paolo;Flinn, Peter C.;Dardenne, Pierre;Lagerholm, Martin;Shenk, John S.;Westerhaus, Mark O.;Cowe, Ian A.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1141-1141
/
2001
The aim of the study was to evaluate the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural network (ANN) on the prediction of chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with information relative to moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected with 10 different Foss NIR Systems instruments, which were either standardized or not standardized to one master instrument. The spectra were trimmed to a wavelength range between 1100 and 2498 nm. Two data sets, one standardized (IVAL) and the other not standardized (SVAL) were used as independent validation sets, but 10% of both sets were omitted and kept for later expansion of the calibration database. The remaining samples were combined into one database (n=21,696), which was split into 75% calibration (CALBASE) and 25% validation (VALBASE). The chemical components in the 3 validation data sets were predicted with each model derived from CALBASE using the calibration database before and after it was expanded with 10% of the samples from IVAL and SVAL data sets. Calibration performance was evaluated using standard error of prediction corrected for bias (SEP(C)), bias, slope and R2. None of the models appeared to be consistently better across all validation sets. VALBASE was predicted well by all models, with smaller SEP(C) and bias values than for IVAL and SVAL. This was not surprising as VALBASE was selected from the calibration database and it had a sample population similar to CALBASE, whereas IVAL and SVAL were completely independent validation sets. In most cases, Local and ANN models, but not modified PLS, showed considerable improvement in the prediction of IVAL and SVAL after the calibration database had been expanded with the 10% samples of IVAL and SVAL reserved for calibration expansion. The effects of sample processing, instrument standardization and differences in reference procedure were partially confounded in the validation sets, so it was not possible to determine which factors were most important. Further work on the development of large databases must address the problems of standardization of instruments, harmonization and standardization of laboratory procedures and even more importantly, the definition of the database population.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.