• 제목/요약/키워드: a electro-hydraulic

검색결과 276건 처리시간 0.026초

Backstepping Sliding Mode-based Model-free Control of Electro-hydraulic Systems

  • Truong, Hoai-Vu-Anh;Trinh, Hoai-An;Ahn, Kyoung-Kwan
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.51-61
    • /
    • 2022
  • This paper presents a model-free system based on a framework of a backstepping sliding mode control (BSMC) with a radial basis function neural network (RBFNN) and adaptive mechanism for electro-hydraulic systems (EHSs). First, an EHS mathematical model was dedicatedly derived to understand the system behavior. Based on the system structure, BSMC was employed to satisfy the output performance. Due to the highly nonlinear characteristics and the presence of parametric uncertainties, a model-free approximator based on an RBFNN was developed to compensate for the EHS dynamics, thus addressing the difficulty in the requirement of system information. Adaptive laws based on the actor-critic neural network (ACNN) were implemented to suppress the existing error in the approximation and satisfy system qualification. The stability of the closed-loop system was theoretically proven by the Lyapunov function. To evaluate the effectiveness of the proposed algorithm, proportional-integrated-derivative (PID) and improved PID with ACNN (ACPID), which are considered two complete model-free methods, and adaptive backstepping sliding mode control, considered an ideal model-based method with the same adaptive laws, were used as two benchmark control strategies in a comparative simulation. The simulated results validated the superiority of the proposed algorithm in achieving nearly the same performance as the ideal adaptive BSMC.

자가 변위 측정이 가능한 전기-유압식 소프트 지핑 구동기의 개발 (Development of an Electro-hydraulic Soft Zipping Actuator with Self-sensing Mechanism)

  • 이동영;곽보건;배준범
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.79-85
    • /
    • 2021
  • Soft fluidic actuators (SFAs) are widely utilized in various areas such as wearable systems due to the inherent compliance which allows safe and flexible interaction. However, SFA-driven systems generally require a large pump, multiple valves and tubes, which hinders to develop a miniaturized system with small range of motion. Thus, a highly integrated soft actuator needs to be developed for implementing a compact SFA-driven system. In this study, we propose an electro-hydraulic soft zipping actuator that can be used as a miniature pump. This actuator exerts tactile force as a dielectric liquid contained inside the actuator pressurized its deformable part. In addition, the proposed actuator can estimate the internal dielectric liquid thickness by using its self-sensing function. Besides, the electrical characteristics and driving performance of the proposed system were verified through experiments.

전기 유압 서어보 시스템의 퍼지제어 (Fuzzy Control for An Electro-hydraulic Servo System)

  • 주해호;이재원;장우석
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.139-148
    • /
    • 1995
  • In this paper an electro-hydraulic servo system is designed by using a fuzzy control algorithm. In order to drive an optimal fuzzy control system, a simulation program for the control system has been developed. By this program the fuzzifier and defuzzifier, a fuzzy inference method, a fuzzy relational matrix, and a fuzzy inference method are investigated. As a result, Larsen inference method, 9*9 fuzzy relational matrix, and center of area defuzzifier are turned out the best as parameters. Finally this method is compared with the conventional PID algotithm, and showed that the fuzzy control performs better than PID algorithm. The fuzzy control performs very well adap- tation against uncertain disturbances.

  • PDF

작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발 (Development of Hybrid Excavator for Regeneration of Boom Potential Energy)

  • 윤종일;안경관;딩광졍;강종민;김재홍
    • 유공압시스템학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

전기유압 서보시스템의 슬라이딩 모드 위치제어 (Position Control of an Electro-hydraulic Servo System with Sliding Mode)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권3호
    • /
    • pp.16-22
    • /
    • 2021
  • The variable structure controller has the characteristic that while in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, so it is robust to the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or exposed to disturbances. To solve this problem, a sliding mode controller based on the IVSC approach excluding an integrator is proposed in this study. The proposed sliding mode control was applied to the position control of a hydraulic cylinder piston. The sliding plane was determined by the pole placement and the control input was designed to ensure the existence of the sliding mode. The feasibility of the modeling and controller was reviewed by comparing it with a conventional proportional control through computer simulation using MATLAB software and experiment in the presence of significant plant parameter fluctuations and disturbances.

EHA용 가변용적형 사판식 유압 피스톤 펌프의 하이브리드 제어 (Hybrid control of the swash plate-type variable displacement hydraulic piston pump for an EHA)

  • 권용철;홍예선
    • 한국항공우주학회지
    • /
    • 제41권4호
    • /
    • pp.291-298
    • /
    • 2013
  • 본 논문에서는 압력보상형 사판식 유압 피스톤 펌프와 밸브 제어형 실린더를 결합한 EHA에 대하여 유압 실린더의 소비 유량이 작으면 펌프 회전 속도를 낮추는 새로운 개념의 하이브리드형 제어 시스템을 제안하였다. 펌프 내 압력조절기의 사판각 제어와 간섭을 피하기 위해 위치 명령 신호의 속도 성분 평균치를 이용하여 펌프의 회전속도를 조절하였고, 시스템 압력이 기준치 이하로 낮아지는 것을 방지하기 위해 압력 스위치 기능을 추가하였다. 시뮬레이션과 실험 결과에 의하면, EHA의 동적인 응답 특성에 영향을 주지 않는 조건에서 하이브리드 제어를 통해 공전 모드에서의 펌프 회전속도를 1,800rpm에서 600rpm로 낮춤으로써 하이브리드 제어를 안 할 경우에 비해 펌프 구동 동력을 약 44%까지 절감시킬 수 있음을 확인하였다.

대부하/구동 제어 시스템 성능예측 프로그램을 이용한 제어시스템 단순화 연구 (The study on control system simplification of underdeveloping heavy-load driving system using developed performance-estimation program)

  • 최근국;이만형;서동연;박상우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.436-440
    • /
    • 1996
  • In this study, underdeveloping heavy-load driving servo control system, which are composed of controller, electro-hydraulic servo-valve, hydraulic motor, reduction gear box, turret slew bearing and turret structure, are investigated to simplify the control system. To estimate the effect of each component, modeling and simulation of linear and nonlinear system are carried out. In the first stage, to prove the reliability of performance estimation program, simulation results are compared with experimental results. In the second stage, the effect of each component of control system is evaluated and then a simplified control system is suggested.

  • PDF

Electro-Magnetic Brake를 위한 BLAC 구동시스템 (BLAC Drive System for Electro-Magnetic Brake)

  • 전미림;이재현;조관열;목형수
    • 전력전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.335-341
    • /
    • 2010
  • 전기제동 시스템(Electric braking system)은 기존 자동차 시스템에서 사용된 유압 브레이크를 대신하여 전동기를 이용하여 제동력을 얻게 된다. 전기제동은 기존 유압식에 비해 부품의 수가 감소되며 ABS, ESC 등의 응답성 향상 및 제동거리 감소효과를 얻을 수 있다. 본 논문에서는 EMB(Electro-Magnetic Brake)용 BLAC 전동기의 제어기를 개발하였다. 제어 시스템은 BLAC 전동기 구동을 위한 전력변환장치와 속도제어를 위한 디지털제어기로 구성되었으며, 빠른 토크 응답특성을 위해 벡터제어 기법을 적용하였다. 또한 Matlab/Simulink를 이용한 시뮬레이션 및 실험 결과를 제시하여 EMB용 BLAC 전동기의 성능을 검증하였다.

전기유동유체를 이용한 엔진마운트의 모델구성과 성능해석 (Model Synthesis and Performance analysis of an Engine Mount Using Electro-Rheological Fluids)

  • 최영태;김기선;최승복;정재천;전영식
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.62-74
    • /
    • 1994
  • This paper addresses on the model synthesis and performance analysis of an engine mount featuring electro-rheological(ER) fluids which undergo a phase change when subjected to electric fields. A novel type of ER fluid-filled engine mount is devised and its hydraulic model is constructed. An equivalent mechanical model is subsequently obtained from the governing equation of the hydraulic model. The model parameters associated with the ER fluids are distilled from experimental investigations on the Bingham properties of the fluids. The distilled data are then incorporated into the governing model to undertake feasible work through computer simulations,. It is shown that the proposed engine mount has an inherent capability of controlling both the damping force and the resonance frequency. Other superior performance characteristics accrued from the proposed methodology are also evaluated.

  • PDF

고속 온.오프 전자밸브를 사용한 유압실린더 힘 제어계의 응답성 개선 (Response Improvement in Hydraulic Cylinder Force Control System by Using a High Speed On-Off Electro-Magnetic Valve)

  • 이일영;권정호;박정환
    • 유공압시스템학회논문집
    • /
    • 제1권4호
    • /
    • pp.15-21
    • /
    • 2004
  • High speed on-off electro-magnetic valves have been used for pressure control or flow control in automotive or construction machine servomechanisms. These systems require quicker valve switching speed to improve control preciseness. The authors designed and manufactured an electric valve driver with quick response characteristics by using 3 power source type valve driver concept. In experiments by using a hydraulic system incorporating the new valve driver, the new driver shortened the switching lag time from 5 ms to 1.3 ms. And also the new driver showed excellent position tracking control performances.

  • PDF