• Title/Summary/Keyword: a electric vehicle

Search Result 1,785, Processing Time 0.034 seconds

Study of Driving Stability Performance of 2-Wheeled Independently Driven Vehicle Using Electric Corner Module (전동 통합 샤시를 이용한 2륜 독립구동 차량의 선회성능 향상에 관한 연구)

  • Park, Jinhyun;Choi, Jeonghun;Song, Hyeonwoo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.937-943
    • /
    • 2013
  • An independently driven electric corner module cannot be applied to an actual vehicle without some difficulty, because of vehicle safety problems in the case of malfunctions and degraded ride and handling performance owing to the increase in the unsprung mass. In this study, a simulator is developed to evaluate the vehicle driving performance in order to solve ride and handling problems. Component modeling of a small-sized electric vehicle with an independently driven electric corner module is performed using MATLAB/Simulink. The vehicle is modeled by using CarSim, which can be used to analyze the vehicle maneuvers with 27 DOFs. The control algorithm for the improvement of vehicle driving safety and ride and handling performance is validated by using the developed simulator.

Two-Speed Gear Shift System for Electric Vehicles (2단 변속시스템을 이용한 전기자동차의 변속제어 알고리즘)

  • 성기택;이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.63-71
    • /
    • 2000
  • A shift control algorithm of a newly developed two-speed gear shift system is proposed for electric vehicle applications. The algorithm is formulated according to the motor torque map and optimized to obtain the adequate propulsion characteristics for vehicle. Two speed gear system with shift control algorithm has proved greater efficiencies in terms of energy economy with its simplified hardware and software structures. The gear shifting is designed to be carried out by an actuator and the control signal from a vehicle control unit equipped with $\mu$-processor. The results of performances and efficiency of the algorithm by simulation and vehicle test are described.

  • PDF

Optimal Scheduling of Level 5 Electric Vehicle Chargers Based on Voltage Level

  • Sung-Kook Jeon;Dongho Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.985-991
    • /
    • 2023
  • This study proposes a solution to the voltage drop in electric vehicle chargers, due to the parasitic resistance and inductance of power cables when the chargers are separated by large distances. A method using multi-level electric vehicle chargers that can output power in stages, without installing an additional energy supply source such as a reactive power compensator or an energy storage system, is proposed. The voltage drop over the power cables, to optimize the charging scheduling, is derived. The obtained voltage drop equation is used to formulate the constraints of the optimization process. To validate the effectiveness of the obtained results, an optimal charging scheduling is performed for each period in a case study based on the assumed charging demands of three connected chargers. From the calculations, the proposed method was found to generate an annual profit of $20,800 for a $12,500 increase in installation costs.

Design and Characteristics Analysis of Switched Reluctance Motor for Electric Power Pallet Vehicle (전동지게차용 스위치드 릴럭턴스 전동기 설계 및 특성해석)

  • Oh, Ju-Hwan;Lee, Byeong-Seok;Lee, Choon-Tack;Jung, Woo-Yong;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.511-518
    • /
    • 2005
  • This paper presents the design and drive characteristics of a switched reluctance motor for an electric power pallet vehicle. The designed switched reluctance motor is redesigned by using the finite element analysis(FEA) as a variation of the pole-arc angle for the purpose of an electric power pallet vehicle performance. The output power and torque characteristics of a switched reluctance motor are variable by switching angles of the commutator. Therefor this paper is studied about relationship between the output power and torque characteristics of a switched reluctance motor according to switching angles. The output power of the characteristic point of an electric power pallet vehicle has been shown by experiment. The designed motor drive system operates with the low voltage and high current with using the battery. The core and frame temperatures were described. In this paper, the designed motor is shown better drive characteristics than the DC motor from the rated to maximum, which is verified by the finite element analysis and experimental results.

Sensitivity Analysis on Driving Characteristics According to Change in Gear Ratio of a Front Wheel Drive Electric Vehicle (전륜구동 전기자동차의 기어비 변경에 따른 구동 특징 민감도 분석)

  • Son, Young-Kap;Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.50-55
    • /
    • 2022
  • Acceleration performance, maximum velocity, urban driving energy consumption, and high-way driving energy consumption are important characteristics of electric vehicle driving. This study analyzes the effect of a gear ratio on these characteristics for a front wheel drive electric vehicle. The normalized sensitivity metric is used to compare the sensitivity of these scaled characteristics to the changes in the gear ratio. The sensitivity analysis results show that the normalized values are 0.95 for maximum velocity, 0.91 for acceleration performance, 0.51 for urban driving energy consumption, and 0.24 for high-way driving energy consumption. Therefore, the maximum velocity was affected the most by the changes in the gear ratio. These results can be used to determine the gear ratio of a front wheel drive electric vehicle to optimize the driving characteristics simultaneously.

Effects of Chloride Concentration and Applied Current Density on Stray Current Corrosion Characteristics of 6061-T6 Al Alloy for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 6061-T6 알루미늄합금의 전식 특성에 미치는 염화물농도 및 인가전류밀도의 영향)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.348-359
    • /
    • 2022
  • Interest in electric vehicle is on the rise due to global eco-friendly policies. To improve the efficiency of electric vehicles, it is essential to reduce weights of components. Since electric vehicles have various electronic equipment, the research on stray current corrosion is required. In this research, a galvanostatic corrosion experiment was performed on 6061-T6 Al alloy for electric vehicle battery housing using chloride concentration and applied current density as variables in a solution simulating an acid rain environment. As a result of the experiment, when chloride concentration and applied current density were increased, corrosion damage became larger. In particular, pitting damage was dominant at an applied current density of 0.1 mA/cm2. Pitting damage over the entire surface was found at a current density of 1.0 mA/cm2. In conclusion, chloride concentration had a relatively large effect on localized corrosion. The applied current density had a great effect on uniform corrosion. However, in the case of applied current density, localized corrosion was also greatly affected by interaction with chloride.

A Study on the Size and the Shape Optimization of Cross Beam for Electric Vehicle using GENESIS 7.0 (GENESIS 7.0을 이용한 전동차용 크로스 빔의 치수와 형상 최적화에 관한 연구)

  • 전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.129-136
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and demand auxiliary equipment such as air pipe, electric wire pipe and gas pipe. Especially, lightweight vehicle body is salutary to save operating costs and fuel consumption. Cross beam supports the weight of passenger and electrical equipments and account for the most of weight of vehicle body. Therefore this study performs the size and the shape optimization of crossbeam for electric vehicle using GENESIS 7.0 and presents the effect of mass reduction and the shape of hole in cross beam.

Implementation of In-wheel Motor Driving System for Electric Vehicle (In-wheel 모터를 이용한 전기자동차 구동시스템의 구현)

  • Yun, Si-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.750-755
    • /
    • 2013
  • In-wheel motor system gets the driving force from direct-driven motor in the wheel of electric vehicle. It is known as good system for vehicles, from an efficiency, packaging, handling and safety. This paper describes motor and inverter technologies, system configuration and control algorithms for in-wheel type electric vehicle. It is necessary to control on an interrelation perspective because this system drives two motors at same time. In system design, IPMSM(Interior Permanent Magnet Synchronous Motor) including a wide operating range and high-speed rpm is used and flux weakening control is performed in constant power range. Under the torque command from the host controller, auto control box, inverter's output torque is calculated with using torque estimation technique and applied to actual vehicle driving system. It is verified that the configuration and the algorithm are suitable for the in-wheel motor system.

Basic Study for Selection of Factors Constituents of User Satisfaction for Micro Electric Vehicles (초소형전기차 사용자만족도 구성요인 선정을 위한 기반연구)

  • Jin, Eunju;Seo, Imki;Kim, Jongmin;Park, Jejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.581-589
    • /
    • 2021
  • With the recent increase in the introduction of micro-electric vehicles in Korea, interest in micro-electric vehicle user satisfaction is increasing to revitalize related markets. In this paper, a basic study was conducted on the development of public services using micro-electric vehicle based on the constituent factors of user satisfaction. The survey includes: ① 'Analytic Hierarchy Process (AHP) for selecting the priority factors of user satisfaction of micro-electric vehicles', ② 'A survey of micro-electric vehicles image' to collect data in advance for providing users' preferences and transportation services for micro-electric vehicles, ③ In order to investigate the user satisfaction level of users who actually operated micro-electric vehicles, the order of 'user satisfaction survey of micro-electric vehicle drivers' was conducted. In the Analytic Hierarchy Process (AHP) analysis, it was found that users regarded as important in the order of 'user utilization data', 'vehicle movement data', and 'charging service data'. In the micro-electric vehicle image survey, users perceived micro-electric vehicles more positively in terms of "safety", 'durability', 'Ride comfort', 'design', 'MOOE (Maintenance and other operating expense)', and 'environment-friendly' when comparing micro-electric vehicles with electric motorcycles. In the survey on the user satisfaction of micro-electric vehicle drivers, the use of micro-electric vehicle did not directly affect work performance efficiency, and there was an experience of being disadvantaged on the road due to the size of the micro-electric vehicle, and driving in a cluster of micro-electric vehicle for outdoor advertisements. The city's public relations effect was great, but it was concerned about safety. In the future, based on the results of this study, we plan to build a user satisfaction structural equation model, preemptively discover feedback R&D for micro-electric vehicle utilization services in the public field, and actively seek to discover new public mobility support services.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.