• 제목/요약/키워드: a direct adaptive control

검색결과 233건 처리시간 0.024초

적응 역전파 학습 알고리즘을 이용한 신경회로망 제어기 설계 (Direct Adaptive Control Based on Neural Networks Using An Adaptive Backpropagation Algorithm)

  • 최경미;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1730-1731
    • /
    • 2007
  • In this paper, we present a direct adaptive control method using neural networks for the control of nonlinear systems. The weights of neural networks are trained by an adaptive backpropagation algorithm based on Lyapunov stability theory. We develop the parameter update-laws using the neural network input and the error between the desired output and the output of nonlinear plant to update the weights of a neural network in the sense that Lyapunove stability theory. Beside the output tracking error is asymptotically converged to zero.

  • PDF

Design of a DSP-Based Adaptive Controller for Real Time Dynamic Control of AM1 Robot

  • S. H. Han;K. S. Yoon;Lee, M. H.;Kim, S. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.100-104
    • /
    • 1998
  • This paper describes the real-time implementation of an adaptive controller fur the robotic manipulator. Digital signal processors(DSPs) are special purpose micro-processors that are particularly powerful for intensive numerical computations involving sums and products of variables. TMS320C50 chips are used in implementing real time adaptive control algorithms to provide an enhanced motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved Lyapunov second stability analysis based on the direct adaptive control theory. The adaptive controller consists of an adaptive feedforward controller and feedback controller. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a assembling robot.

  • PDF

직접 적응 제어기의강인성 및 성능의 개선에 관한연구 (A Study on the Improvement of Robustness of a Direct Adaptive Controller)

  • 김응석;김홍필;양해원
    • 대한전기학회논문지
    • /
    • 제40권6호
    • /
    • pp.606-614
    • /
    • 1991
  • A robust direct adaptive controller with respect to additive and multiplicative unmodeled dynamics is designed. A new term, proportional to the product of the bounded tracking error and normalizing signal, is added to the conventional control input for improvement of robustness and performances of an adaptive system. It is shown by the mathematical analysis and simulation results that the stability of the closed loop system is guaranteed and the performance of the system is improved.

직접 적응제어방식에 의한 로봇 머니퓰레이터의 견실한 제어기 설계에 관한 연구 (A Study on Robust Controller Design of Robotic Manipulator Using Direct Adaptive Control)

  • 한성현;박한일
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.559-559
    • /
    • 1989
  • This paper deals with the robust controller design of robot manipulator to track a desired trajectory in spite of the presence of unmodelled dynamics in cause of nonlinearity and parameter uncertainty. The approach follwed in this paper is based on model reference adaptive control technique and convergence on hyperstability theory but it does away with the assumption that process is characterized by a linear model remaining time invariant during adaptation process. The performance of controller is demonstrated by computed simulation about position and speed control of six link manipulator in case of disturbance and payload variation.

직접 적응제어방식에 의한 로봇 머니퓰레이터의 견실한 제어기 설계에 관한 연구 (A Study on Robust Controller Design of Robotic Manipulator Using Direct Adaptive Control)

  • 한성현;박한일
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.59-69
    • /
    • 1989
  • This paper deals with the robust controller design of robot manipulator to track a desired trajectory in spite of the presence of unmodelled dynamics in cause of nonlinearity and parameter uncertainty. The approach follwed in this paper is based on model reference adaptive control technique and convergence on hyperstability theory but it does away with the assumption that process is characterized by a linear model remaining time invariant during adaptation process. The performance of controller is demonstrated by computed simulation about position and speed control of six link manipulator in case of disturbance and payload variation.

  • PDF

연속시간 직접 적응 극배치 제어 (Continuous-time Direct Adaptive Pole Placement Control)

  • 김종환;구근모;이선우;김태현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.407-412
    • /
    • 1990
  • This note presents a novel algorithm for a continuous-time direct adaptive pole placement control for single-input single-out nonminimum phase systems. Although the resulting overall closed-loop system is locally stable, assumptions about parameter convergence or the nature of the external input are not considered.

  • PDF

직접토크제어 유도전동기 구동 서보시스템을 위한 장치고장 진단 기법 (An Instrument Fault Diagnosis Scheme for Direct Torque Controlled Induction Motor Driven Servo Systems)

  • 이기상;유지수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.241-251
    • /
    • 2002
  • The effect of sensor faults in direct torque control(DTC) based induction motor drives is analyzed and a new Instrument fault detection isolation scheme(IFDIS) is proposed. The proposed IFDIS, which operated in real-time, detects and isolates the incipient fault(s) of speed sensor and current sensors that provide the feedback information. The scheme consists of an adaptive gain scheduling observer as a residual generator and a special sequential test logic unit. The observer provides not only the estimate of stator flux, a key variable in DTC system, but also the estimates of stator current and rotor speed that are useful for fault detection. With the test logic, the IFDIS has the functionality of fault isolation that only multiple estimator based IFDIS schemes can have. Simulation results for various type of sensor faults show the detection and isolation performance of the IFDIS and the applicability of this scheme to fault tolerant control system design.

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

Adaptive Sliding Mode Control을 이용한 전기유압식 서어보시스템의 위치제어에 관한 연구 (A Study on the Position Control of Electrohydraulic Servo System Using Adaptive Sliding Mode Control)

  • 현장환;이정오
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.143-157
    • /
    • 1994
  • This paper is concerned with the position control of electrohydraulic servo system under parameter variation. An adaptive sliding mode control which uses the direct parameter estimation scheme, is proposed to design a robust controller for fast and accurate control of the system. It is shown that the adaptive sliding mode control algorithm is robust and effective in attaining fast and accurate position control of system under time-dependent parameter variation. It is also shown experimentally that chattering phenomena in a sliding mode control can significantly be reduced by using boundary layer technique, and that new approach in sliding mode control introducing a term proportional to the distance between the current state and the sliding surface in the control law is effective to obtain fast response and to increase stability of the system. Computer simulation on the dynamic performance of the control system is also presented.

  • PDF

State Feedback Control by Adaptive Observer for Plants with Unknown Disturbance

  • Araki, Kazutoshi;Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Makino, Tomoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.48.3-48
    • /
    • 2002
  • 1) Linear state feedback control design problem for plant with unknown deterministic disturbance is considered and a method to realize state feedback by using adaptive observer which estimates the unknown disturbance simultaneously is proposed. 2) From the viewpoint of practical application, we propose an extended adaptive observer with direct plant path from input to output, which is necessary to use the acceleration type sensors as plant output. 3) Theoretical result is confirmed by numerical simulation of 1-DOF vibration control system.

  • PDF