• Title/Summary/Keyword: a current sensor

Search Result 2,203, Processing Time 0.045 seconds

Development of Optical Fiber Displacement Sensor for Non-contact Vibration Measurement in the High Speed Rotation System (고속회전체의 진동 측정용 비접촉 광섬유 변위센서 개발)

  • Lee, Kee-Seok;Hong, Jun-Hee;Shin, Woo-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.50-56
    • /
    • 2005
  • This paper is described a development of an optical fiber displacement sensor. The optical fiber sensor using an intensity modulated measures the displacement between target and sensor. A prototype sensor is composed of a transmitting part, a receiving part and a signal processing circuit. The experiment was conducted not only the sensor performance but also factors that affect intensity. The main performance of this sensor is resolution of 0.37um and the non-linearity $0.7\%$ FS and the dynamic bandwidth of about 6.3kHz. As a result of rotation test, the prototype sensor showed an equivalent performance to a commercial eddy current sensor.

A Study of the Real-time Sensing by the Optical Current Sensor for GIS

  • Park, Won-Zoo;Kim, Yeong-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.75-80
    • /
    • 2009
  • In this study, a Web server was constructed using LabVIEW's DataSocket, which makes possible acquisition, analysis, and saving in real time. The output value of the optical current sensor at the web server PC was measured and the output value was displayed using the Web browser of the client PC. DataSocket by LabVIEW makes the construction of a Web server easier than other languages and is compatible with other application programs. An optical current sensor was composed using a 1310 [nm] laser diode, and 9/125 [${\mu}m$] standard single mode optical fiber and was created to be a close type sensor. Data measurement using Web servers has the advantage of monitoring electric power systems at a great distance and can fuse IT technology and electric power systems. Also, this measurement uses inexpensive mounting and programming when compared to existing measurement equipment allowing the construction of a measurement system in any situation or surrounding.

Estimation of State-of-charge and Sensor Fault Detection of a Lithium-ion Battery in Electric Vehicles (전기자동차용 리튬이온전지를 위한 SOC 추정 및 센서 고장검출)

  • Han, Man-You;Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1085-1091
    • /
    • 2014
  • A model based SOC estimation scheme using parameter identification is described and applied to a Lithium-ion battery module that can be installed in electric vehicles. Simulation studies are performed to verify the effect of sensor faults on the SOC estimation results for terminal voltage sensor and load current sensor. The sensor faults should be detected and isolated as soon as possible because the SOC estimation error due to any sensor fault seriously affects the overall performance of the BMS. A new fault detection and isolation(FDI) scheme by which the fault of terminal voltage sensor and load current sensor can be detected and isolated is proposed to improve the reliability of the BMS. The proposed FDI scheme utilizes the parameter estimation of an input-output model and two fuzzy predictors for residual generation; one for terminal voltage and the other for load current. Recently developed dual polarization(DP) model is taken to develope and evaluate the performance of the proposed FDI scheme. Simulation results show the practical feasibility of the proposed FDI scheme.

A Study on the Design of a Current Type ROIC for Uncooled Bolometer Thermal Image Sensor Using Correlated Double Sampling

  • Kwak, Sang-Hyeon;Lee, Po;Jung, Eun-Sik;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.7-8
    • /
    • 2009
  • In the presence of infrared light, a CMOS Readout IC (ROIC) for a microbolometer typed infrared sensor detects the voltage or current that is caused by the changing in resistance in the bolometer sensor. A serious problem in designing the ROIC is how the value of the bolometer and reference resistors vary because of variations in manufacturing process. Since different pixel have different, resistance values, sensor operations must contend with fixed pattern noise (FPN) problems. In this paper, we propose a novel technique to compensate for the fluctuation in reference resistance by tiling into account the process variation. By using constant current source basing and correlated double sampling, we solved FPN.

  • PDF

A study on the application of Rogowski coil on the LTCC (저온소성 다층 세라믹 기판에 로고스키코일을 내장한 전류센서에 관한 연구)

  • Park, Sung-Hyun;Kim, Eun-Sup;Shin, Byoung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.475-482
    • /
    • 2010
  • Rogowski coil which detects magnetic flux on current changes. It is used for digital integration with watt-hour meter's current sensor, because, Rogowski coil has non-cored or non-magnetic core structure, so that, it cannot be saturated magnetically. This is a study for inventing accurate electric current sensors that have been applied on multi-layer ceramic substrate. We have confirmed its properties from each different layer's materials and pattern sizes by MWS 3D Electromagnetic field analysis program. And, after sensor manufacturing on multi-layer ceramic substrate, we confirmed its sensing quality is reliable as accurate electric current sensor for watt-hour meter.

Long range-based low-power wireless sensor node

  • Komal Devi;Rita Mahajan;Deepak Bagai
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.570-580
    • /
    • 2023
  • Sensor nodes are the most significant part of a wireless sensor network that offers a powerful combination of sensing, processing, and communication. One major challenge while designing a sensor node is power consumption, as sensor nodes are generally battery-operated. In this study, we proposed the design of a low-power, long range-based wireless sensor node with flexibility, a compact size, and energy efficiency. Furthermore, we improved power performance by adopting an efficient hardware design and proper component selection. The Nano Power Timer Integrated Circuit is used for power management, as it consumes nanoamps of current, resulting in improved battery life. The proposed design achieves an off-time current of 38.17309 nA, which is tiny compared with the design discussed in the existing literature. Battery life is estimated for spreading factors (SFs), ranging from SF7 to SF12. The achieved battery life is 2.54 years for SF12 and 3.94 years for SF7. We present the analysis of current consumption and battery life. Sensor data, received signal strength indicator, and signal-to-noise ratio are visualized using the ThingSpeak network.

Development of a Ubiquitous Sensor for Monitoring Insulators and Lightning Arresters (애자/피뢰기 모니터링을 위한 유비쿼터스 센서 개발)

  • Kil, Gyung-Suk;Rhyu, Keel-Soo;Song, Jae-Yong;Kim, Il-Kwon;Park, Dae-Won;Choi, Soo-Yeon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.117-123
    • /
    • 2007
  • In this study, a ubiquitous sensor for condition monitoring of insulators and lightning arresters installed in power distribution lines and electric traction vehicles is presented. The sensor consists of two parts; a leakage current measurement and a lightning surge detection. Measured data are transmitted to a supervisory computer through ZigBee protocol based on IEEE 802.15.4. To detect leakage current, a window type Mn-ZCT is used and a low-noise amplifier with a gain of 60dB is designed, and this can measure leakage current in ranges of $100{\mu}A{\sim}5mA$. A sample-hold (S/H) and a Rogowski coil are injected to analyze the magnitude of surge current in ranges from 100A to 10kA with $8/20{\mu}s$-waveform.

The Development of Diagnostic Sensor for Inner Deterioration of Covered Electric Wire (피복전선의 내부 열화 검출용 센서 개발)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • In this research, it have developed a sensor that could diagnose inner deterioration of covered wires. With this sensor it observed results from simulation, and the attribute required for realization. For simulation it have used FLUX, it have considered all of geometric and electromagnetic information from coil and base metal that influences eddy current sensor's property in order to predict the final result. It assumed there is no mutual inductance in the coil with N number of turns, because equivalent current flows in coil that is continuously connected in eddy current sensor. It assumed circular coil loop draws a circle, always have self inductance, and they are connected in series and overlapped according number of turns (N) in coil, and bobbin configuration. Actual sensor was produced with consideration of inductance and number of turns (N). In conclusion, it were able to test the dependency through results from simulation, actual measurement, and modeling of simulation. It is considered that attributes of respective base metal and structure can be predicted by simulating in advance.

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

A Novel Hybrid Fault Location Sensor Employable to the Power Transmission Systems (가공 송전선의 사고 및 낙뢰 검출을 위한 새로운 하이브리드 센서)

  • Chang, Yong-Moo;Kang, Moo-Sung;Hwang, Ryul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.583-584
    • /
    • 2005
  • In this work, a novel hybrid FL sensor consisting of two Rogowski coils has been designed for the installation on the ground wire of the transmission tower. The operation range of these coils is as follows: 30kA for the fault current comingfrom the ground fault or short-circuit and for the lightning current up to 150kA over 500kHz. Thus, two important functions could be provided: one is to detect the fault current and the other one is to find the fault location between towers or the location of induced lightning stroke. The on-site investigation at 800kV test yard has been under progress for its on-site application.

  • PDF