• Title/Summary/Keyword: a biped walking robot

Search Result 195, Processing Time 0.025 seconds

A Study on Computer Simulation of Joint Compliance for a Biped Robot (이족 보행 로봇의 관절부위 유연특성 시뮬레이션에 관한 연구)

  • Lee, Ki-Joo;Park, Joong-Kyung;Lim, Si-Hyung;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.907-911
    • /
    • 2007
  • Compliance of joints must be considered when we analyze dynamics of a multi-body system. If the virtual model for CAE(computer aided engineering) analysis does not consider compliance, the result of CAE analysis can be very different from the actual experimental result. Especially in a biped walking robot, the robot may lose walking stability due to the compliance in joints of a walking robot. This paper proposed a method applying a compliance of joints in the biped walking robot to a virtual model. Also, through the 3-D displacement measurement using a laser tracker, it was demonstrated that the virtual model considering the joint compliance could effectively simulate the nonlinear motion of the real model.

Walking Pattern Generation employing DAE Integration Method

  • Kang Yun-Seok;Park Jung-Hun;Yim Hong Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.364-370
    • /
    • 2005
  • A stable walking pattern generation method for a biped robot is presented in this paper. In general, the ZMP (zero moment point) equations, which are expressed as differential equations, are solved to obtain a stable walking pattern. However, the number of differential equations is less than that of unknown coordinates in the ZMP equations. It is impossible to integrate the ZMP equations directly since one or more constraint equations are involved in the ZMP equations. To overcome this difficulty, DAE (differential and algebraic equation) solution method is employed. The proposed method has enough flexibility for various kinematic structures. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.

A Gait Implementation of a Biped Robot Based on Intelligent Algorithm (지능 알고리즘 기반의 이족 보행로봇의 보행 구현)

  • Kang Chan-Soo;Kim Jin-Geol;Noh Kyung-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.

A study on the ZMP Trajectory generation in multi step walking of IWR-III Biped Walking Robot (이족보형로봇의 전체 보행구간에서의 균형점 궤적 생성에 관한 연구)

  • Koo, Ja-Hyuk;Choi, Young-Ha;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.546-548
    • /
    • 1998
  • This paper deals with ZMP trajectory generation in multi step walking of IWR-III(Inha Walking Robot) Biped Walking Robot. Biped walking is realized by combining 6-types of pre-defined steps and the actual ZMP can be used as a stability index of a robot. For the good tracking of actual ZMP, desired ZMP trajectory is generated during the whole walking time not for each step. Trajectory generation is performed considering velocities and accelerations of given via points using 5-th order polynomial interpolation method. As a result, balancing joints have a more smooth and continuous motion and actual ZMP has a better tracking ability. Numerical simulator is done by MATLAB to guarantee the walking of a robot satisfying the ZMP stability.

  • PDF

A Study on the Obstacle-Avoidance Walking Algorithm of a Biped Robot (이족보행로봇의 장애물극복 보행알고리즘에 관한 연구)

  • Kim, Yong-Tae;Lee, Eun-Seon;Lee, He-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.686-691
    • /
    • 2003
  • In the paper, an intelligent biped walking robot that can overcome the obstacle is developed. Walking algorithms are designed based on the analysis of the human's manner of walking. Infrared sensors are used to detect the obstacles in the working environment and the remote controller of the biped robot use a RF module. The experiment results show that the developed biped walking robot can perform the stable static walking, attention walking, rotation and side stepping to avoid the obstacle, and hurdling the obstacle using the distance correction algorithm that is designed based on the distance information between the biped robot and the obstacle.

A Study on the Optimal Solution for the Manipulation of a Robot with Four Limbs (4지 로봇의 최적 머니퓰레이션에 관한 연구)

  • Lee, Ji Young;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1231-1239
    • /
    • 2015
  • We developed a robot that has four limbs, each of which has the same kinematic structure and has 6 degrees of freedom. The robot is 600mm high and weighs 4.3kg. The robot can perform walking and manipulating task by using the four limbs selectively. The robot has three walking patterns. The first one is biped walking, which uses two rear limbs as legs and two front limbs as arms. The second one is biped walking with supporting arms, which is basically biped walking but uses two arms as supporting legs for increasing stability of the robot. The last one is quadruped walking, which uses all the four limbs as legs. When a task for the robot is given, the robot approaches the task point by selecting an appropriate walking pattern among three walking patterns and performs the task. The robot has many degrees of freedom and is a redundant system for a three dimensional task. We propose a redundancy resolution method, in which the robot’s translational move to the task point is modeled as a prismatic joint and optimal solutions are obtained by optimizing some performance criteria. Several simulations are performed for the validity of the proposed method.

Low-Power Walking Compensation Method for Biped Robot Based on Consumption Energy Analysis (소비 에너지 분석을 통한 이족로봇의 저전력 보행 보정 기법)

  • Lee, Chang-Seok;Na, Doo-Young;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.793-798
    • /
    • 2010
  • In this paper we propose a low-power walking compensation method for biped robot based on consumption energy analysis. Firstly, basic walking motions that can reduce energy consumption of robot movements are implemented based on consumption energy analysis according to robot axes. We define knee bent motion as a basic walking motion. It can improve energy consumption and motion stability by lowering center of gravity of the biped robot. We analyze consumption energy of left and right leg of the robot using motor currents and propose a compensation method of walking motions to reduce unbalance of consumption energy between left leg and right leg. It can also improve energy consumption and walking stability of the robot. The proposed low-power compensation method based on consumption energy analysis is verified by walking experiments of a small biped robot with an embedded system.

A Study on the Gait Optimization of a Biped Robot (이족보행로봇의 걸음세 변화에 관한 최적화 연구)

  • Noh, Kyung-Kon;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2405-2407
    • /
    • 2003
  • This study deals with the gait optimization of via points on biped robot. ZMP(Zero Moment Point) is most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, legs's trajectory and a desired ZMP trajectory is required, balancing weight's movement is solved by FDM(Finite Difference Method). In this study, optimal index is defined to dynamically static walking of a biped robot, and optimization of via points is applied by GA(Genetic Algorithm).

  • PDF

Low-Power Walking Trajectory Generation of Biped Robot and Its Realization (이족 로봇의 저전력 보행 궤적 생성 및 구현)

  • Park Sang-Su;Kim Byung-Soo;Oh Jae-Joon;Choi Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.443-448
    • /
    • 2006
  • In this paper, a novel method is proposed for generating the low-power and stable walking trajectory of biped robots, and then a biped robot with 25 DOFs(degrees of freedom) is designed and implemented for the realization of the low-power walking trajectory generated by the proposed method. In our method, first a stable VPCG(vertically projected center of gravity) trajectory is generated, and then the trajectories of ankle and pelvis of a biped robot are planned to follow the preplanned stable VPCG trajectory, which produces a waking pattern without bending its knees and enables a biped robot to walk with less power consumption. On the other hand, a biped robot implemented in this paper has the mechanical structure of foot that enables a biped robot to support on the ground well, and the mechanical structure of pelvis that enables a biped robot to move flexibly. From results of the walking experiment and power consumption measurement, it was confirmed that the proposed method can generate the more stable and flexible trajectory with less power consumption compared with the existing methods which do not use the ankle of a biped robot.

A study on The Real-Time Implementation of Intelligent Control Algorithm for Biped Robot Stable Locomotion (2족 보행로봇의 안정된 걸음걸이를 위한 지능제어 알고리즘의 실시간 실현에 관한 연구)

  • Nguyen, Huu-Cong;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.224-230
    • /
    • 2015
  • In this paper, it is presented a learning controller for repetitive walking control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured due to the walking period through the intelligent control, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of intelligent control to biped robotic motion is shown via dynamic simulation with 25-DOF biped walking robot.