• 제목/요약/키워드: a assembly constraints

Search Result 101, Processing Time 0.019 seconds

Development of Monitoring System for Hull Construction Processes Using TOC Analysis (제약이론을 적용하여 설계된 선각건조공정 모니터링 시스템 개발)

  • Yun, Hoon-Hee;Sheen, Dong-Mok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.315-321
    • /
    • 2008
  • A large ship usually consists of 300 to 500 blocks, for which it is extremely difficult to monitor the whole manufacturing processes from assembly to erection. In an effort to unify all the data and procedures, shipbuilding companies are installing ERP systems, which have brought great improvement throughout the company as a whole. In some departments, however, the ERP systems are not being fully utilized. This paper analyzes and solves the problems revealed especially at the production departments after an ERP system is installed. In this research, firstly a TOC(Theory of Constraints) analysis is done to find out the best solution for those problems. Secondly, based on the solution found, a Monitoring System for hull construction processes is developed with an improved user interface. The visualization of data is designed to reflect the needs of the production departments. The new system supplements the ERP system in that it selectively utilizes the unified data base and is operated under ERP environment. The system is installed in the production departments and its usefulness is verified.

A Political Economic Analysis of Decentralization: Fiscal Autonomy and Primary System (지방분권제도에 대한 정치경제학적 분석: 재정자치 및 국회의원경선제도)

  • Kim, Jaehoon
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.27-69
    • /
    • 2009
  • This paper studies the logic of fiscal constraints and fiscal autonomy in a political agency model with both moral hazard and adverse selection. The electoral process not only disciplines incumbents who may act against the public interest but also opts in politicians who are most likely to act along voters' interests. We characterize perfect Bayesian equilibria under shared tax system and fiscal autonomy with fiscal constraints for local public good provision. It is shown that the local voters' expected welfare under fiscal autonomy is higher than under shared tax system if the same fiscal constraints are applied. In order to examine the effects of party's candidate selection processes on the behavior of local politician and national politician, we extend the model to an environment where local politician can compete for the candidacy of national assembly with incumbent national politician. If local politician wins majority of votes against incumbent national politician, then he can move on to serve as a national politician. Otherwise, his political career will end as a local politician. It is the gist of this primary system portrayed by this setup that local politician and national politician compete to garner more votes. Therefore, primary system as a candidate selection mechanism enhances local residents' welfare compared to top-down candidate selection processes.

  • PDF

Possible power increase in a natural circulation Soluble-Boron-Free Small Modular Reactor using the Truly Optimized PWR lattice

  • Steven Wijaya;Xuan Ha Nguyen;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.330-338
    • /
    • 2023
  • In this study, impacts of an enhanced-moderation Fuel Assembly (FA) named Truly Optimized PWR (TOP) lattice, which is modified based on the standard 17 × 17 PWR FA, are investigated in a natural circulation Soluble-Boron-Free (SBF) Small Modular Reactor (SMR). Two different TOP lattice designs are considered for the analysis; one is with 1.26 cm pin pitch and 0.38 cm fuel pellet radius, and the other is with 1.40 cm pin pitch and 0.41 cm fuel pellet radius. The NuScale core design is utilized as the base model and assumed to be successfully converted to an SBF core. The analysis is performed following the primary coolant circulation loop, and the reactor is modelled as a single channel for thermal-hydraulic analyses. It is assumed that the ratio of the core pressure drop to the total system pressure drop is around 0.3. The results showed that the reactor power could be increased by 2.5% and 9.8% utilizing 1.26/0.38 cm and 1.40/0.41 cm TOP designs, respectively, under the identical coolant inlet and outlet temperatures as the constraints.

Nuclear Core Design for a Marine Small Power Reactor (선박용 소형동력로의 노심 핵설계)

  • 최유선;김종채;김명현
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.146-152
    • /
    • 1996
  • A small power reactor core of 108 MW$\_$th/ was designed with some design constraints: 2 year refueling cycle length, soluble boron free operation, low power density, and proven fuel assembly design - Uljin 3'||'&'||'4 design specifications. CASMO-3 and KINS-3 was used to evaluate operational capability for power level control via control rods. Cycle length, power peaking factor, M.T.C., and power coefficients were also checked. Designed core loaded with KOFAs satisfied all design goals. We found that much more burnable poisons are to be loaded with axial enrichment zoning. Control rod assemblies should be located at every other assemblies with more than 3 banks. Additional shutdown banks are proposed for the safe plant cooldown, which could be located at core periphery.

  • PDF

The Configuration Design of Industrial Sewing Machine Kinematic Mechanism with Expert System (전문가 시스템을 이용한 공업용 재봉기 기구 메커니즘 구성설계)

  • 이장용
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.13-17
    • /
    • 2001
  • The configuration design of kinematic mechanisms of industrial sewing machine has been studied using a functional approach. The configuration design methodology has been applied to shorten the development cycle time of mechanisms and to manage design data efficiently Expert system has been used to embody the decomposition of functional requirements. It has been interfaced with a CAD system through the API program to show the assembly and parts of the mechanism. Constraints also can be handled by the expert system through the rule induction and the case based reasoning process. The configuration design system includes the kinematical analysis and optimization of the mechanisms of an industrial sewing machine by the interface between the expert system and an analysis program by means of API Program supplied by expert system. The conceptual design of sewing machine mechanism can be Performed rapidly and efficiently.

  • PDF

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.

Experimental Study on Improvement of Pipe-rack Joint (Pipe-rack접합부 개선방법에 관한 실험적 연구)

  • Lee, Jong-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • The development of new technology and process in industrial Plant which builds integrated structures, facilities and systems. Has become a key element for strengthening its competitiveness. Although domestic industrial Plant has demonstrated excellence in technology with a persistent increase in order quantity and orders received, the technology gap between countries has narrowed due to global construction trend. Therefore, it is necessary to develop new technology that could help overcome constraints and limitations of the current one to follow the trend in the age of unlimited competition. This study has focused on assembly technology of Pipe-rack joint connection in an effort to strengthen technological competitiveness in industrial Plant. Through an analysis of earlier studies on Pipe-rack and a coMParative analysis of strengths and weaknesses of current assembly technology of it, a new design plan has been made to improve it efficiently. In doing this, standards for design factors of both structural and performance features have been drawn, and value of stress, strain, moment and rotation has been calculated using finite element analysis. As a result, installation technology of modular type Pipe-rack, which has not been developed in Korea and is differentiated from the current one, has been developed. It is considered that the technology reduces work time and saves cost due to simplified joint connection of steel structure, unlike the current one. Moreover, since it is installed without a welding process in the field, industrial accidents would be reduced, which is likely to have economic competitiveness and satisfy.

Optimization of a Nuclear Fuel Spacer Grid Using Considering Impact and Wear with Homology Constraints (호몰로지 조건을 이용하여 충격과 마모를 고려한 원자로 핵연료봉 지지격자의 최적설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.145-150
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods saftely. Therefore, the spacer gl1d set should have sufficient strength for the external impact forces. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to tile flow-induced vibration. The conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined and corresponding design parameters are selected. The overall flow of the design is defined according to the application of axiomatic design. The design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis because the contact area becomes wider.

  • PDF

Finite element analysis for 3-D self-contact problems of C.v.joint rubber boots (3차원 자체접촉을 위한 유한요소해석에 의한 등속조인트 고무부트의 변형해석)

  • Lee, H.W.;Kim, S.H.;Lee, C.H.;Huh, H.;Lee, J.H.;Oh, S.T.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2121-2133
    • /
    • 1997
  • A finite element code is developed for 3-D self-contact problems, using continuum elements with a SRI(Selective Reduced Integration) scheme to prevent locking phenomenon by the incompressibility of rubber. Contact treatment is carried out in two ways : using the displacement constraints in case of rigid contact ; and imposing the same contact forces on two contact boundaries in case of self-contact. The finite element code developed is applied to the deformation analysis of C.V.joint boots which maintain lubrication conditions and protect the C.V.joint assembly from impact and dust. The boot accompanies large rotation depending on the rotation of the wheel axis and leading to the self-contact phenomena of the boot bellows. Since this contact phenomenon causes wear of the product and has great influence on the endurance life of the product, it is indispensable to carry out stress analysis of the rubber boots. In case of self-contact, various methods for determining contact forces have been suggested with an appropriate contact formulation. Especially, the types of penetration in self-contact are modularized to accelerate conputation with a contact algorithm.

Improvement of the amplification gain for a propulsion drives of an electric vehicle with sensor voltage and mechanical speed control

  • Negadi, Karim;Boudiaf, Mohamed;Araria, Rabah;Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.661-675
    • /
    • 2022
  • In this paper, an electric vehicle drives with efficient control and low cost hardware using four quadrant DC converter with Permanent Magnet Direct Current (PMDC) motor fed by DC boost converter is presented. The main idea of this work is to improve the energy efficiency of the conversion chain of an electric vehicle by inserting a boost converter between the battery and the four quadrant-DC motor chopper assembly. Consequently, this method makes it possible to maintain the amplification gain of the 4 quadrant chopper constant regardless of the battery voltage drop and even in the presence of a fault in the battery. One of the most important control problems is control under heavy uncertainty conditions. The higher order sliding mode control technique is introduced for the adjustment of DC bus voltage and mechanical motor speed. To implement the proposed approach in the automotive field, experimental tests were carried out. The performances obtained show the usefulness of this system for a better energy management of an electric vehicle and an ideal control under different operating conditions and constraints, mostly at nominal operation, in the presence of a load torque, when reversing the direction of rotation of the motor speed and even in case of battery chamber failure. The whole system has been tested experimentally and its performance has been analyzed.