• Title/Summary/Keyword: a accelerometer

Search Result 1,051, Processing Time 0.022 seconds

Vibration Control of Vehicle Suspension Featuring Magnetorheological Dampers: Road Test Evaluation (MR 댐퍼를 적용한 자동차 현가장치의 진동제어 : 실차시험 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.980-985
    • /
    • 2008
  • This paper presents vehicle road test of a semi-active suspension system equipped with continuously controllable magnetorheological (MR) dampers. As a first step, front and rear MR dampers are designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial middle-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the MR dampers, the test vehicle is prepared for road test by integrating current suppliers, real-time data acquisition system and numerous sensors such as accelerometer and gyroscope. Subsequently, the manufactured four MR dampers (two for front parts and two for rear parts) are incorporated with the test vehicle and a skyhook control algorithm is formulated and realized in the data acquisition system. In order to emphasize practical aspect of the proposed MR suspension system, road tests are undertaken on proving grounds: bump and paved roads. The control responses are evaluated in both time and frequency domains by activating the MR dampers.

  • PDF

Improving Performance of Human Action Recognition on Accelerometer Data (가속도 센서 데이터 기반의 행동 인식 모델 성능 향상 기법)

  • Nam, Jung-Woo;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.523-528
    • /
    • 2020
  • With a widespread of sensor-rich mobile devices, the analysis of human activities becomes more general and simpler than ever before. In this paper, we propose two deep neural networks that efficiently and accurately perform human activity recognition (HAR) using tri-axial accelerometers. In combination with powerful modern deep learning techniques like batch normalization and LSTM networks, our model outperforms baseline approaches and establishes state-of-the-art results on WISDM dataset.

Improvement of Earth Gravity Field Maps after Pre-processing Upgrade of the GRACE Satellite's Star Trackers

  • Ko, Ung-Dai;Wang, Furun;Eanes, Richard J.
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • Earth's gravity field recovery was improved after the pre-processing upgrade of the Gravity Recovery And Climate Experiments (GRACE) satellite's star trackers. The star tracker measurements were filtered with a tighter low-pass filtering of 0.025Hz cutoff frequency, instead of a nominal filtering of 0.1Hz cutoff frequency. In addition, a jump removal algorithm was applied to remove discontinuities, due to direct Sun and/or Moon interventions, in the star tracker measurements. During the K-Band Ranging (KBR) calibration maneuvers, large attitude variations could be detected concurrently by both of the star trackers and the accelerometer. The misalignment angles of star trackers between the true frame and the normal frame could be determined by comparing measurements from these sensors. In this paper, new Earth' gravity field maps were obtained using above improvement. Based on comparisons to nominal Earth's gravity field maps, the new Earth's gravity field maps were found better than the nominal ones. Among the applied methods, the misalignment calibration of the star trackers had a major impact on the improvement of the new Earth's gravity field maps.

Vibration Control of Vehicle Suspension Featuring Magnetorheological Dampers : Road Test Evaluation (MR댐퍼를 적용한 자동차 현가장치의 진동제어 : 실차시험 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.235-242
    • /
    • 2009
  • This paper presents vehicle road test of a semi-active suspension system equipped with continuously controllable magnetorheological(MR) dampers. As a first step, front and rear MR dampers are designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial middle-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the MR dampers, the test vehicle is prepared for road test by integrating current suppliers, real-time data acquisition system and numerous sensors such as accelerometer and gyroscope. Subsequently, the manufactured four MR dampers(two for front parts and two for rear parts) are incorporated with the test vehicle and a skyhook control algorithm is formulated and realized in the data acquisition system. In order to emphasize practical aspect of the proposed MR suspension system, road tests are undertaken on proving grounds: bump and paved roads. The control responses are evaluated in both time and frequency domains by activating the MR dampers.

A Test Bench with Six Degrees of Freedom of Motion For Development of Small Quadrotor Drones (소형 쿼드로터 드론 개발을 위한 6 자유도 운동 실험 장치)

  • Jin, Jaehyun;Jo, Jin-Hee
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • A new test bench for small multi-rotor type drones has been developed. Six degrees of freedom (DOF) motion is possible due to a ball bushing, wheels, and rotating plates. An FPGA (field programmable gate array) based controller, that supports realtime parallel processing, is used to measure attitude with an accelerometer and a gyro to adjust motor speed. Several tests were performed to check the operational properties of the test bench and the controller. The results show that this test bench is proper for verifying controllers and the control methods of small multi-rotor drones.

Adaptive Cone-Kernel Time-Frequency Distribution for Analyzing the Pipe-Thinning in the Secondary Systems of NPP (원전 이차계통 파이프 감육상태 분석를 위한 적응 콘-커널 시간-주파수 분포함수)

  • Kim, Jung-Taek;Lee, Sang-Jeong;Lee, Cheol-Kwon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.131-137
    • /
    • 2006
  • The secondary system of nuclear power plants consists of sophisticated piping systems operating in very aggressive erosion and corrosion environments, which make a piping system vulnerable to the wear and degradation due to the several chemical components and high flow rate (~10 m/sec) of the coolant. To monitor the wear and degradation on a pipe, the vibration signals are measured from the pipe with an accelerometer For analyzing the vibration signal the time-frequency analysis (TFA) is used, which is known to be effective for the analysis of time-varying or transient signals. To reduce the inteferences (cross-terms) due to the bilinear structure of the time-frequency distribution, an adaptive cone-kernel distribution (ACKD) is proposed. The cone length of ACKD to determine the characteristics of distribution is optimally selected through an adaptive algorithm using the normalized Shannon's entropy And the ACKD's are compared with the results of other analyses based on the Fourier Transform (FT) and other TFA's. The ACKD shows a better signature for the wear/degradation within a pipe and provides the additional information in relation to the time that any analysis based on the conventional FT can not provide.

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.

The Simultaneous Measurement of Vibration and Applied forces at a Power tool handle for the Evaluation of Hand-transmitted Vibration (수전달 진동 평가를 위한 공구 핸들에서의 진동과 작용력의 동시 측정)

  • Choi, Seok-Hyun;Jang, Han-Kee;Park, Tae-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.689-694
    • /
    • 2004
  • To increase accurateness and reliability of the evaluation of power tool vibration transmitted to an operator, it is necessary to measure grip and feed forces during the measurement of hand-transmitted vibration. In the study a system was invented to measure the vibration and the grip and/or feed force, which consists of a measurement handle and a PC with data acquisition system and the software. Strain gauges and an accelerometer were mounted on the handle for the simultaneous measurement of the forces and the vibration. The program in the system makes it possible to monitor the grip and feed force during the tool operation so that the operator keeps the applying forces within the pre-determined range. Investigating the vibration total values, frequency-weighted root mean square accelerations at the handle, obtained at various conditions with control of the grip and feed force showed more consistency than those measured without force control. By using the system the experimenter can reduce uncertainty of the measured vibration.

  • PDF

A Study on the Development of a Seismic Response Monitoring System for Cable Bridges by Using Accelerometers (가속도계를 이용한 사장교의 지진거동 계측시스템 개발에 대한 연구)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.283-292
    • /
    • 2021
  • In this study, a structural health monitoring system for cable-stayed bridges is developed. In the system, condition assessment of the structure is performed based on measured records from seismic accelerometers. Response indices are defined to monitor structural safety and serviceability and derived from the measured acceleration data. The derivation process of the indices is structured to follow the transformation from the raw data to the outcome. The process includes noise filtering, baseline correction, numerical integration, and calculation of relative differences. The system is packed as a condition assessment program, which consists of four major processes of the structural health evaluation: (i) format conversion of the raw data, (ii) noise filtering, (iii) generation of response indices, and (iv) condition evaluation. An example set of limit states is presented to evaluate the structural condition of the test-bed and cable-stayed bridge.

Physical Function Monitoring Systems for Community-Dwelling Elderly Living Alone: A Comprehensive Review

  • Jo, Sungbae;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Objective: This study aims to conduct a comprehensive review of monitoring systems to monitor and manage physical function of community-dwelling elderly living alone and suggest future directions of unobtrusive monitoring. Design: Literature review Methods: The importance of health-related monitoring has been emphasized due to the aging population and novel corona virus (COVID-19) outbreak.As the population gets old and because of changes in culture, the number of single-person households among the elderly is expected to continue to increase. Elders are staying home longer and their physical function may decline rapidly,which can be a disturbing factorto successful aging.Therefore, systematic elderly management must be considered. Results: Frequently used technologies to monitor elders at home included red, green, blue (RGB) camera, accelerometer, passive infrared (PIR) sensor, wearable devices, and depth camera. Of them all, considering privacy concerns and easy-to-use features for elders, depth camera possibly can be a technology to be adapted at homes to unobtrusively monitor physical function of elderly living alone.The depth camera has been used to evaluate physical functions during rehabilitation and proven its efficiency. Conclusions: Therefore, physical monitoring system that is unobtrusive should be studied and developed in the future to monitor physical function of community-dwelling elderly living alone for the aging population.