• Title/Summary/Keyword: a accelerometer

Search Result 1,046, Processing Time 0.029 seconds

Improvement of Dynamic Respiration Monitoring Through Sensor Fusion of Accelerometer and Gyro-sensor

  • Yoon, Ja-Woong;Noh, Yeon-Sik;Kwon, Yi-Suk;Kim, Won-Ki;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.334-343
    • /
    • 2014
  • In this paper, we suggest a method to improve the fusion of an accelerometer and gyro sensor by using a Kalman filter to produce a more high-quality respiration signal to supplement the weakness of using a single accelerometer. To evaluate our proposed algorithm's performance, we developed a chest belt-type module. We performed experiments consisting of aerobic exercise and muscular exercises with 10 subjects. We compared the derived respiration signal from the accelerometer with that from our algorithm using the standard respiration signal from the piezoelectric sensor in the time and frequency domains during the aerobic and muscular exercises. We also analyzed the time delay to verify the synchronization between the output and standard signals. We confirmed that our algorithm improved the respiratory rate's detection accuracy by 4.6% and 9.54% for the treadmill and leg press, respectively, which are dynamic. We also confirmed a small time delay of about 0.638 s on average. We determined that real-time monitoring of the respiration signal is possible. In conclusion, our suggested algorithm can acquire a more high-quality respiration signal in a dynamic exercise environment away from a limited static environment to provide safer and more effective exercises and improve exercise sustainability.

Real-time Recognition of Daily Human Activities Using A Single Tri-axial Accelerometer

  • Rubaiyeat, Husne Ara;Khan, Adil Mehmood;Kim, Tae-Seong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.289-292
    • /
    • 2010
  • Recently human activity recognition using accelerometer has become a prominent research area in proactive computing. In this paper, we present a real-time activity recognition system using a single tri-axial accelerometer. Our system recognizes four primary daily human activities: namely walking, going upstairs, going downstairs, and sitting. The system also computes extra information from the recognized activities such as number of steps, energy expenditure, activity duration, etc. Finally, all generated information is stored in a database as daily log.

Biaxial Accelerometer-based Magnetic Compass Module Calibration and Analysis of Azimuth Computational Errors Caused by Accelerometer Errors (2 축 가속도계 기반 지자기 센서 모듈의 교정 및 가속도계 오차에 의한 방위각 계산 오차 분석)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • A magnetic compass module must be calibrated accurately before use. Moreover, the calibration process must be performed taking into account any magnetic dip if the magnetic compass module has tilt angles. For this, a calibration method for a magnetic compass module is explained. Tilt error of the magnetic compass module is compensated using a biaxial accelerometer generally. The accelerometer error causes a tilt angle calculation error that gives rise to an azimuth calculation error. For error property analysis, error equations are derived and simulations are performed. In the simulation results, the accuracy of derived error equations is verified. If a biaxial magnetic compass module is used instead of a triaxial one, the magnetic dip and z-axis magnetic compass data must be estimated for tilt compensation. Lastly, estimation equations for the magnetic dip and z-axis magnetic compass data are derived, and the performance of the equations is verified based on a simulation.

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi;Jafari, Kian;Sharifi, Mohammad Javad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.794-801
    • /
    • 2018
  • This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

Golf Green Slope Estimation Using a Cross Laser Structured Light System and an Accelerometer

  • Pham, Duy Duong;Dang, Quoc Khanh;Suh, Young Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.508-518
    • /
    • 2016
  • In this paper, we propose a method combining an accelerometer with a cross structured light system to estimate the golf green slope. The cross-line laser provides two laser planes whose functions are computed with respect to the camera coordinate frame using a least square optimization. By capturing the projections of the cross-line laser on the golf slope in a static pose using a camera, two 3D curves’ functions are approximated as high order polynomials corresponding to the camera coordinate frame. Curves’ functions are then expressed in the world coordinate frame utilizing a rotation matrix that is estimated based on the accelerometer’s output. The curves provide some important information of the green such as the height and the slope’s angle. The curves estimation accuracy is verified via some experiments which use OptiTrack camera system as a ground-truth reference.

Wrist joint analysis of Myoelectronic Hand using Accelerometer (가속도계를 이용한 전동의수의 손목관절 시스템 해석)

  • 장대진;김명회;양현석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.876-881
    • /
    • 2003
  • This study focused on to design and toanalysis of a myoelectronic hand. We considered a low frequency factor in human life and to quantify low frequency which a human body responded to using a 1-axis ant a 3-axis accelerometer. The dynamic myoelectronic hand are important for tasks such a continuous prosthetic control and a EMG signal recognition, which have not been successfully mastered by the most neural approached To control myoelectronic hand, classifying myoelectronic patterns are also important. Experimental results of FEM are 110㎫ on Thumb, 200㎫ on Index finger, 220㎫ on Middle finger 260㎫ on Ring finger and 270㎫ on Little finger. Experimental results of accelerometer are 1.4-0.4(m/s2) ,(5-20(〔Hz〕) in Feeding activity and 0.4-0(m/s2) (0-10〔Hz〕) in Lifting activity. Considering these facts, we suggest a new type myoelectronic hand.

  • PDF

Application of High-precision Accelerometer Made in Korea to Health Monitoring of Civil Infrastructures (국산 고정밀 가속도계의 건설 구조물 적용성 평가)

  • Kwon, Nam-Yeol;Kang, Doo-Young;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.277-283
    • /
    • 2016
  • A high-precision force-feedback 3-axes accelerometer developed in Korea has been investigated and studied for the verification of feasibility in the computational analysis and health monitoring of civil infrastructures. Through a series of experiment, the nonlinearity, bandwidth, low-frequency signal measurement accuracy and bias characteristics of the accelerometer has been thoroughly compared to those of two accelerometers produced by two market leaders in domestic and global accelerometer market. The experiment results shows that the overall measurement performance of the accelerometer has superiority over the performance of the two accelerometers from global market leader companies. Especially, the accelerometer shows a better low-frequency signal measurement accuracy and constant bias characteristic, which are mostly required in the computational analysis and the long-term health monitoring of large-scale civil infrastructures.

Real-Time Physical Activity Recognition Using Tri-axis Accelerometer of Smart Phone (스마트 폰의 3축 가속도 센서를 이용한 실시간 물리적 동작 인식 기법)

  • Yang, Hye Kyung;Yong, H.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.506-513
    • /
    • 2014
  • In recent years, research on user's activity recognition using a smart phone has attracted a lot of attentions. A smart phone has various sensors, such as camera, GPS, accelerometer, audio, etc. In addition, smart phones are carried by many people throughout the day. Therefore, we can collect log data from smart phone sensors. The log data can be used to analyze user activities. This paper proposes an approach to inferring a user's physical activities based on the tri-axis accelerometer of smart phone. We propose recognition method for four activity which is physical activity; sitting, standing, walking, running. We have to convert accelerometer raw data so that we can extract features to categorize activities. This paper introduces a recognition method that is able to high detection accuracy for physical activity modes. Using the method, we developed an application system to recognize the user's physical activity mode in real-time. As a result, we obtained accuracy of over 80%.

FUZZY ESTIMATION OF VEHICLE SPEED USING AN ACCELEROMETER AND WHEEL SENSORS

  • HWANG J. K.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.359-365
    • /
    • 2005
  • The absolute longitudinal speed of a vehicle is estimated by using data from an accelerometer of the vehicle and wheel speed sensors of a standard 50-tooth antilock braking system. An intuitive solution to this problem is, 'When wheel slip is low, calculate the vehicle velocity from the wheel speeds; when wheel slip is high, calculate the vehicle speed by integrating signal of the accelerometer.' The speed estimator weighted with fuzzy logic is introduced to implement the above concept, which is formulated as an estimation method. And the method is improved through experiments by how to calculate speed from acceleration signal and slip ratios. It is verified experimentally to usefulness of estimation speed of a vehicle. And the experimental result shows that the estimated vehicle longitudinal speed has only a $6\%$ worst-case error during a hard braking maneuver lasting a few seconds.

Optimal Design of a Convective MEMS Accelerometer (열대류형 초소형 가속도계의 최적 설계)

  • Park, Byoung-Kyoo;Kim, Joon-Won;Moon, Il-Kwon;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1951-1956
    • /
    • 2008
  • Various MEMS accelerometers are used in engineering applications including automobiles, mobile phones, military systems, and electronic devices. Among them, the thermal accelerometer employing the temperature difference induced by the convective flow inside the micro cavity has been a topic of interest. As the convective sensor does not utilize a solid proof mass, it is compact, lightweight, inexpensive to manufacture, sensitive and highly endurable to mechanical shock. However, the complexity of the convective flow and various design constraints make optimization of a device a crucial step before fabrication. In this work, optimization of a 2-axis thermal convective MEMS accelerometer is conducted based on 3-dimensional numerical simulation. Parametric studies are performed by varying the several design variables such as the heater shape/size, the cavity size and types of the gas medium and the position of temperature probes in the sensor. The results of optimal design are presented.

  • PDF