• Title/Summary/Keyword: a SPR

Search Result 238, Processing Time 0.031 seconds

Active Ingredients and Antioxidant Activities of Salvia plebeia R. Br. According to Pretreatment Conditions (전처리 조건에 따른 배암차즈기(Salvia plebeia R. Br.)의 주요 성분의 함량 및 항산화)

  • Kim, Yong-Joo;Jeong, Ji-Suk;Park, No-Jin;Go, Geun-Bae;Son, Byeong-Gil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1948-1953
    • /
    • 2014
  • This study examined changes in antioxidant activity as well as contents of rosmarinic acid, homoplantaginin, and luteolin, which is the main substance of Salvia plebeia R. Br. (SPR) known to have anti-inflammatory efficacy, according to drying, blanching, and fermentation conditions. Rosmarinic acid content was 16.42 mg/g upon hot-air drying and 10.19 mg/g upon hot-air drying after blanching, and there was no significant difference in the case of leaf and root freezing or cold-air drying. Rosmarinic acid content was 8.69 and 8.15 mg/g in the case of air-drying in the shade and freeze-drying, respectively, and decreased to 0.05 mg/g or undetected after fermentation. SPR processed by freeze-drying, cold-air drying in the shade, and hot-air drying showed ABTS radical scavenging ability over 98.5% at a concentration over $500{\mu}g/mL$ as well as excellent radical scavenging ability of 87.3% in the case of hot-air drying after blanching. Root showed lower ABTS radical scavenging ability than leaves. SOD-like activity was measured to be 6.1~27.8% at a concentration of $1,000{\mu}g/mL$, which was significantly difference from ABTS radical scavenging ability. As rosmarinic acid and homoplantagine, an anti-inflammatory material contained in SPR, are almost undetectable after oxidation fermentation during processing, hot-air drying after blanching or drying seems to be suitable to develop SPR as a functional substance.

Development of Thermo-Cosmetics Using Photothermal Effect of Gold Nanoparticles (금 나노입자의 광열효과를 이용한 온열화장품 개발)

  • Lee, Jae-Yeul;Kim, Bo-Mi;Park, Se-Ho;Choi, Yo-Han;Shim, Kyu-Dong;Moon, Sung-Bae;Jang, Eue-Soon;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Many applications of nanoparticles have been developed since 1970s. Surface plasmon resonance (SPR) effect can be generated at the surface of nanoparticles by illumination. SPR is the resonant oscillation of conduction electrons at the surface material stimulated by incident light. The collisions between excited electrons and metal atoms can cause the production of thermal energy (photothermal effect). Here, we presented the development of thermo-cosmetics using photothermal effect of gold nanoparticles. Gold nanoparticles (GNPs) were chosen for it's low toxicity. We also and investigated the cell biocompatibility and heating effectiveness for photothermal effect of GNPs. Synthesized GNPs were verified by UV-vis spectrophotometer, where GNP has a characteristic absorbance spectrum. Concentration of GNP was measured by atomic absorption analyzer. The cytotoxicity was confirmed by MTT assay and double staining assay. Photothermal effect of GNP was demonstrated by the thermal increasing properties depending on GNP concentration, which was taken by an IR-thermal camera with a xenon lamp as the light source. If the thermal effect of GNP is applied for thermo-cosmetics, it can supply heat to skin by converting solar energy into thermal energy. Thus, cosmetics containing GNPs can provide benefits to people in the cold region or winter season for maintaining skin temperature, which lead to a positive effect on skin health.

Sulfate Reduction of Rice Paddy, Foreshore, and Reservoir Soil (논과 갯벌과 저수지 토양의 황산염 환원)

  • Kim, Min-Jeong;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1468-1475
    • /
    • 2010
  • Sulfate reduction rates (SRR) using $^{35}SO_4^{-2}$, sulfide producing rates (SPR) using gas chromatography, the number of sulfate reducing bacteria (SRB) using the most probable number (MPN) method, and soil components (moisture, ammonium, total nitrogen, total organic carbon, total carbon, total inorganic phosphorus, total phosphorus, and sulfate) using standard methods in the organic/conventional rice paddy soils, cleaned/polluted reservoir soils, and cleaned/polluted foreshore soils were studied with the change of seasons. The average SRR was more related to the number of SRB and soil components (especially nitrogen and phosphorus) than sulfate concentration. SRR was also recorded to be highest in October soil samples. However, SPR was higher in foreshore soils containing a high concentration sulfate than in fresh water soils, and it was also recorded to be higher in the polluted areas than in clean areas. From these results, we can conclude that the SRR and SPR of anaerobic environments were affected by the number of SRB, soil components and temperature.

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Synthesis of Polyrotaxane-biotion Conjugates and Surface Plasmon Resonance Analysis of Streptavidin Recognition

  • Ooya, Tooru;Kawashima, Tomokatsu;Yui, Nobuhiko
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.293-300
    • /
    • 2001
  • A polyrotaxane-biotin conjugate was synthesized and its interaction with streptavidin measured using surface plasmon resonance(SPR) detection. A biodegradable polyrotaxane in which ca, 22 molecules of ${\alpha}$-cyclodextrina(${\alpha}$-CDs) were threaded onto a poly(ethylene oxide) chain(M$\sub$n:4,000) capped with benzyloxycarbonyl-L-phenylalanine was conjugated with a biotin hydorazide and 2-aminoethanol after activing the hydroxyl groups of ${\alpha}$-CDs in the polyrotaxane using N, N'-carbonyldiimidazole. The results of the high-resolution $^1$H-nyclear lmagnetic resonance($^1$H-NMR)spectra and gel permeation chromatography of the conjugate showed that ca, 11 biotin molecules were actually introduced to the polyrotaxane scaffold. An SPR analysis showed that the binding curves of the biotin molecules in the conjugate on the streptavidin-deposited surface changed in a concentration dependent manner, indicating that the biotin in the conjugate was ac-tually recognized by streptavidin. The association equilibrium constant(K$\sub$a/) of the interaction be-tween the conjugate and steptavidin tetramer was of the order 10$\^$7/. These results suggest that polyrotaxane is useful for scaffolds as a polymeric ligand in biomedical fields.

  • PDF

In Vitro Biocompatibility Test of Multi-layered Plasmonic Substrates with Flint Glasses and Adhesion Films

  • Kim, Nak-Hyeon;Byun, Kyung Min;Hwang, Seoyoung;Lee, Yena;Jun, Sang Beom
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.174-179
    • /
    • 2014
  • Since in vitro neural recording and imaging applications based on a surface plasmon resonance (SPR) technique have expanded dramatically in recent years, cytotoxicity assessment to ensure the biosafety and biocompatibility for those applications is crucial. Here, we report the cytotoxicity of the SPR substrate incorporating a flint glass whose refractive index is larger than that of a conventional crown glass. A high refractive index glass substrate is essential in neural signal detection due to the advantages such as high sensitivity and wide dynamic range. From experimental data using primary hippocampal neurons, it is found that a lead-based flint glass is not appropriate as a neural recording template although the neuron cells are not directly attached to the toxic glass. We also demonstrate that the adhesion layer between the glass substrate and the gold film plays an important role in achieving the substrate stability and the cell viability.

Multi-point detection of hydrogen using the hetero-core structured optical fiber hydrogen tip sensors and Pseudorandom Noise code correlation reflectometry

  • Hosoki, Ai;Nishiyama, Michiko;Igawa, Hirotaka;Seki, Atsushi;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • In this paper, the multi-point hydrogen detection system based on the combination of the hetero-core optical fiber SPR hydrogen tip sensor and interrogator by pseudorandom noise (PN) code correlation reflectometry has been developed. In a light intensity-based experiment with an LED operating at 850 nm, it has been presented that a transmitted loss change of 0.32dB was induced with a response time of 25 s for 4% $H_2$ in $N_2$ in the case of the 25-nm Au, 60-nm $Ta_2O_5$, and 5-nm Pd multi-layers film. The proposed sensor characteristic shows excellent reproducibility in terms of loss level and time response for the in- and out- $H_2$ action. In addition, in the experiment for multi-point hydrogen detection, all sensors show the real-time response for 4% hydrogen adding with reproducible working. As a result, the real-time multi-point hydrogen detection could be realized by means of the combination of interrogating system and hetero-core optical fiber SPR hydrogen tip sensors.

Aggregation of Laser-Generated Gold Nanoparticles Mediated by Formalin

  • Alauddin, Md.;Kim, Kuk Ki;Roy, Madhusudan;Song, Jae Kyu;Kim, Myung Soo;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.188-196
    • /
    • 2013
  • We have investigated the effects of formalin on the assembly of colloidal gold nanoparticles (AuNPs) prepared by laser ablation of a solid gold target in deionized water. Upon addition of formalin, the surface plasmon resonance (SPR) band at 519 nm for pure AuNPs decreases and shifts to red while a new broad SPR band appears at ~700 nm. The red-shift is prominent with increase in the incubation time. The average size of the initial AuNPs is around 12 nm but it increases to 23 nm after addition of formalin. It turns out that formalin acts as a cationic surfactant for AuNPs with negative surface charge in the colloidal solutions. Furthermore, through analysis of the Raman spectrum of formalin and the density functional theory calculations, we confirm that methanediol is the main species in formalin which is in charge of the aggregation of AuNPs.