• Title/Summary/Keyword: a 2-axis positioning table

Search Result 4, Processing Time 0.021 seconds

2-axis tracking control of servo system with two-degree-of-freedom (2자유도를 갖는 서보 시스템의 2축 추적제어)

  • 이제희;박호준;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.844-847
    • /
    • 1996
  • This paper describes the servo position control for the 2-axis positioning table the servo controller consists of conventional feedback loops, disturbance observer. To reduce the contour error, which occurs in the multi-dimensions machines, cross-coupled controller(CCC) is suggested. A weak point of the CCC is their low effectiveness in dealing with arbitrary nonlinear contour such as circles and parabolas. This paper introduces a new nonlinear CCC that is based on control gains that vary during the contour movement The gains of CCC and adjusted in real time according to the shape of nonlinear contour. The feedback controller based on the disturbance observer compensated for external disturbance, plant uncertainty and bad effectiveness by friction model. Suggested servo controller which improve the contouring accuracy, apply to the 2-axis system. Simulation results on 2-axis table verify the effectiveness of the proposed servo controller.

  • PDF

A NEW MEASUREMENT METHOD OF FEMORAL ANTEVERSION BASED ON THREE DIMENSIONAL MODELING (3차원 모델링을 이용한 대퇴 전염각의 측정)

  • Kim, June-S.;Park, Hee-J.;Choi, Kwang-S.;Choi, Kui-W.;Kim, Sun-I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.141-144
    • /
    • 1997
  • Femoral neck anteversion is the angle between the neck and the knee axis projected on a plane perpendicular to the longitudinal axis. Conventional methods that use cross-sectional Computed Tomography(CT) images to estimate femoral anteversion have several problems because of the complex 3D structure of the femur. These are the ambiguity of defining the longitudinal axis, the femoral neck axis and condylar line, and the dependence on patient positioning. Especially the femoral neck axis that is known as a major source of error is hard to determine from a single or multiple 2D transverse images. So we developed a new method for measuring femoral anteversion by 3D modeling method. In this method, femoral head is modeled as a sphere. The center of femoral neck is the mid-point of the 2D reconstructed oblique image in the femoral neck part. Then neck axis is a line connecting foregoing two centers. We model the longitude of femur as a cylinder, and the long axis is defined from the fitted cylinder. The knee axis which is tangent to the back of the femoral condyles is easily determined by table-top method. By the definition of femoral anteversion, the femoral anteversion is easily calculated from this model.

  • PDF

The Cooperation of Arc Welding Robot and Manipulator for Continuous Welding of Corner Area (모서리 부위 연속 용접을 위한 아크 용접 로봇과 포지셔너의 협업)

  • 장교근;유범상
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.96-98
    • /
    • 1996
  • Welding of corner area across the edge is a difficult problem in robotized arc welding system, especially when continuously-welded leakage-proof product is required. This paper presents the methodology of cooperation plan of an arc welding robot and 1 or 2 axis welding manipulators for corner area welding. Welding trajectory for the robot is generated using clothoid curves; symmetrical double clothoid curve or unsymmetrical clothoid curve depending on the nature of the workpiece. The clothoid curve is first formulated for the case of linear type positioning table and then applied to the case of rotary type manipulator. The methodology is then illustrated for practical downhand welding situations.

  • PDF

An Optimization Method of Measuring Heart Position in Dynamic Myocardial Perfusion SPECT with a CZT-based camera (동적 심근관류 SPECT에서 심장의 위치 측정방법에 대한 고찰)

  • Seong, Ji Hye;Lee, Dong Hun;Kim, Eun Hye;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.75-79
    • /
    • 2019
  • Purpose Cadmium-zinc-telluride (CZT) camera with semiconductor detector is capable of dynamic myocardial perfusion SPECT for coronary flow reserve (CFR). Image acquisition with the heart positioned within 2 cm in the center of the quality field of view (QFOV) is recommended because the CZT detector based on focused multi-pinhole collimators and is stationary gantry without rotation. The aim of this study was to investigate the optimal method for measuring position of the heart within the center of the QFOV when performing dynamic myocardial perfusion SPECT with the Discovery NM 530c camera. Materials and Methods From June to September 2018, 45 patients were subject to dynamic myocardial perfusion SPECT with D530c. For accurate heart positioning, the patient's heart was scanned with a mobile ultrasound and marked at the top of the probe where the mitral valve (MV) was visible in the parasternal long-axis view (PLAX). And, the marked point on the patient's body matched with the reference point indicated CZT detector in dynamic stress. The heart was positioned to be in the center of the QFOV in rest. The coordinates of dynamic stress and rest were compared statistically. Results The coordinates of the dynamic stress using mobile ultrasound and those taken of the rest were recorded for comparative analysis with regard to the position of the couch and analyzed. There were no statistically significant differences in the coordinates of Table in & out, Table up & down, and Detector in & out (P > 0.05). The difference in distance between the 2 groups was measured at $0.25{\pm}1.00$, $0.24{\pm}0.96$ and $0.25{\pm}0.82cm$ respectively, with no difference greater than 2 cm in all categories. Conclusion The position of the heart taken using mobile ultrasound did not differ significantly from that of the center of the QFOV. Therefore, The use of mobile ultrasound in dynamic stress will help to select the correct position of the heart, which will be effective in clinical diagnosis by minimizing the image quality improvement and the patient's exposure to radiation.