• Title/Summary/Keyword: ZrO2 second phases

Search Result 7, Processing Time 0.019 seconds

Phase Distribution, Microstructure, and Electrical Characteristics of NASICON Compounds

  • N.H. Cho;Kang, Hee-Bok;Kim, Y.H.
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.179-184
    • /
    • 1995
  • Sodium superionic conductor (NASICON) compounds were prepared. The effects of sintering temperature and cooling rate on the formation and the distribution of crystalline NASICON and $ZrO_3$ second phase were investigated. In the von Alpen-type composition, the $ZrO_2$ second phase is in thermal equilibrium with the crystalline NASICON above $1320^{\circ}C$, but when cooled through 1260-$1320^{\circ}C$ crystalline NASICON was formed by reaction between $ZrO_2$ and liquid phase. Very slow cooling ($1^{\circ}C$/hr) to $1260^{\circ}C$ from sintering temperature decreased the amount of sodium which prevents the formation of the crystalline NASICON resulted high number of $ZrO_2$ grains near the surface of some sintered bodies. Maximum electrical conductivity of 0.200 ohm-1cm-1 was obtained at $300^{\circ}C$ for well-sintered samples with little $ZrO_3$. On the other hand, low conductivities were obtained for rapid-cooled samples which have less dense microstructure.

  • PDF

Synthesis of Solid Electrolyte Nasicon by Solid State Reaction

  • Kim, Cheol-Jin;Chung, Jun-Ki;Lim, Sung-Ki;Rhee, Meung-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1996
  • Solid electroyte nasion was synthesized by the optimized solid state reaction minimizing the volume fraction of secondary $ZrO_2$ and glassy phases. To compensate for the evaporation of Na and P during heat-treatment, excess Na and P were added to the starting composition $Na_{1+x} Zr_2 Si_x P_{d-x} O_{12}$ (x=2.1). Phases pure nasicon comparable in volume fraction to the one obtaied from sol-gel process were synthesized after the reaction at $1100~1150^{\circ}C$,$ P_{O2}>=0.1-0.15 $$ZrO_2$ increased with the heat-treatment time due to the decomposition of nasicon phase and that of glassy phase increased as partial oxygen pressure decreased. The synthesized nasion showed a good electrical conductivity of $-1{\times}10^{-2}({\omega}{\cdot}cm)^{-1}$ at $350^{\circ}C$.

  • PDF

Low Temperature Sintered $CaZr(BO_3)_2$ Microwave Dielectric Ceramics for LTCC Application ($CaZr(BO_3)_2$ 세라믹스의 저온 소결 및 마이크로웨이브 유전 특성)

  • Nam, Myoung-Hwa;Kim, Hyo-Tae;Kim, Jong-Hee;Mahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.259-259
    • /
    • 2007
  • The low temperature sintering of dolomite type borates, $CaZr(BO_3)_2$[CZB] ceramics and their microwave dielectric properties were investigated The sintering temperature of CZB ceramics could be reduced from $1150^{\circ}C$ to $925^{\circ}C$ by the addition of sintering additive. $CaZrO_3$, $ZrO_2$ and $CaB_2O_4$ second phases were found in the CZB ceramics. The syntheses, sintering properties, microstructures, and dielectricnproperties of dolomite-type borates were examined by XRD, thermal analysis, electron microscopy, network analyzer, and the results are discussed intensively. The compatibility with silver electrode was also explored.

  • PDF

Effect of M2O3 on the Sinterbility and Electrical Conductivity of ZrO2(Y2O3) System(III) : Ceramics of the ZrO2-Y2O3-Ln2O3 System (ZrO2(Y2O3)계 세라믹스의 소결성과 전기전도도에 대한 M2O3의 영향(III) : ZrO2-Y2O3-Ln2O3계 세라믹스)

  • 오영제;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.123-132
    • /
    • 1987
  • Yttria-stabilized zirconia with erbia-lanthana were investigated with respect to the amount of Ln2O3 (Ln; Er, La) addition in the range of 0.5∼5 mol% to the base composition of 8 mol% yttriazirconia. Following analysis and measurement were adopted for the characterization of synthesizes of solid electrolyte; phase transformation, lattice parameter, crystallite size, relative density, chemical composition and SEM/EDS. Electrical conductivity by two-probe method versus temperature from 350$^{\circ}C$ to 800$^{\circ}C$ and frequency in the range of 5Hz∼13MHz by complex impedance method was also conducted together with the determination of oxygen ion transference number by EMF method for the evaluation of their electrical properties. The results were as followsing; Electrical conductivity were decreased with increase in Ln2O3 content, but their activation energies increased. In the case of La2O3 addition, espicially, its electrical conductivity was decreased owing to the segregation of second phases at the grain-boundary. Grain-boundary conductivity of the specimen contained 0.5 mol% Er2O3 exhibited a maximum conductivity among thecompositions experimented. However, their bulk conductivities decreased in both case. Oxygen ion transference number was also reduced with decrease in oxygen partial pressure. For example, in the case of Er2O3 addition it retained value in the range of 0.97∼0.94 abvove 4.74${\times}$10-2in oxygen partial pressure. With the increase in the quantities of the evaporation of additive components, the crystallite size of stabilized zirconia decreased, and their relative density also reduced owing to the formation of porosity in their matrices. In the case of La2O3 the sinterbility was improved in the limited amount of addition up to 0.5 mol%, in the same range of addition the strength of sintered bodies were improved perhaps owing to the precipitation of metastable tetragonal phase in the fully stabilized zirconia.

  • PDF

Sinterability and microwave dielectric properties of $Zr1-x(Zn_{1/3}Nb_{2/3})xTiO_4$ system ceramics sintered at low temperature (저온소결용 $Zr1-x(Zn_{1/3}Nb_{2/3})xTiO_4$ 세라믹스의 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Lee, Joo-Young;Kim, Nam-Hyeop;Lee, Joo-Sik;Shim, Sang-Heung;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.208-209
    • /
    • 2006
  • Sinterability and microwave dielectric properties of the $Zr1-x(Zn_{1/3}Nb_{2/3})xTiO_4$(x=4, 6) system ceramics have been investigated as functions of zinc-borosilicate(ZBS) glass contents and amount of $Zn_{1/3}Nb_{2/3}O_2$ substitution with a view to applying the composition to LTCC technology. The addition of 25 wt% ZBS glass ensured successful sintering below $925^{\circ}C$. With increasing ZBS glass and $Zn_{1/3}Nb_{2/3}O_2$ contents increased dielectric constant and sinterability but addition ZBS glass decreased the quality factor significantly due to the formation of an excessive liquid and second phases. The sintered $Zr4(Zn_{1/3}Nb_{2/3})6TiO_4$ system ceramics at $925^{\circ}C$ with 25 wt% ZBS glass demonstrated 27.7 in dielectric constant (${\varepsilon}_r$), 3,850 m quality factor($Q{\times}f_0$), and +6 ppm/$^{\circ}C$ in temperature coefficient of resonant frequency($\tau_f$).

  • PDF

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Fabrication and characteristics of modified PZT System doped With $La_2O_3$ ($La_2O_3$가 첨가된 modified PZT계의 제조 및 특성)

  • 황학인;박준식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.418-427
    • /
    • 1997
  • The effect of $La_2O_3$ as a dopant on the microstructure structure, crystal structure and electrical properties was studied. $0.05Pb(Sn_{0.5}Sb_{0.5})O_3+0.11PbTiO_3+0.84PbZroO_3+0.4Wt%MnO_2$ (=0.05PSS +0.11PT+0.84PZ+0.4wt%$MnO_2$) systems doped with 0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 mole% $La_2O_3$ were fabricated and investigated sintering density, crystal structure and micro-structure. The sintered 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system doped with $La_2O_3$showed sintering density of the range of 7.683 g/㎤ of 0 mole% doping to 7.815 g/㎤ of 0 mole% doping. The average grain sizes in the range of 0 to 5 mole% $La_2O_3$were decreased from 9.0 $\mu\textrm{m}$ to 1.3 $\mu\textrm{m}$. X-ray diffraction investigation of sintered bodies showed that solid solutions were formed between 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system and $La_2O_3$ in the range of 0 to 1 mole% but second phases were formed in case of 3, 5 mole%. Dielectric constants at 1 kHz were increased with 0 to 3 mlole% $La_2O_3$ before and after poling at the condition of 5 $KV_{DC}$/mm at $120^{\circ}C$ or $140^{\circ}C$ during 20 minutes. All Dielectric losses at 1 kHz were less than 1%, Curie temperatures were $208^{\circ}C$, $183^{\circ}C$, $152^{\circ}C$ and $127^{\circ}C$ at 0, 0.5, 1, 3 mole% $La_2O_3$ respectively. The values of $K_p$ were increased from 0 to 3 mole% $La_2O_3$ after poling at condition of 5 $KV_{DC}$mm at the condition of $120^{\circ}C$ or $140^{\circ}C$. The case of 0.7 mole% $La_2O_3$doped 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system showed $K_p$ of 14.5% by poling at $140^{\circ}C$ during 20 minutes.

  • PDF