• 제목/요약/키워드: Zr-based alloy

검색결과 157건 처리시간 0.025초

생체용 Ti 합금의 부식특성 (Corrosion Characteristics of Titanium Alloys for Medical Implant)

  • 한준현;이규환;신명철
    • 분석과학
    • /
    • 제9권2호
    • /
    • pp.192-197
    • /
    • 1996
  • 현재 사용되고 있는 생체용 금속재료로 스테인레스강(SUS 316), Co-Cr강, 순수 Ti, Ti-6Al-4V이 많이 사용되고 있으며 그 중에서도 특히 Ti이 각광을 받고 있다. 그러나 순수한 Ti은 생체적합성과 내식성은 좋은 반면 기계적 성질이 합금에 비해 뒤떨어지고, Ti-6Al-4V은 V의 세포독성이 지적되고 있어 이러한 문제를 해결하기 위해 세포독성이 없는 함금원소를 Ti에 첨가한 새로운 합금을 설계하였다. 그 중에서 Ti-20Zr-3Nb-3Ta-0.2Pd-1In과 Ti-5AI-4Zr-2.5Mo은 기계적 성질도 뛰어나고 우수한 전기화학적 부식특성을 가지고 있었다.

  • PDF

AI-Li계 합금의 초소성에 관한 연구 (Study on the Superplasticity in Al-Li Alloy Systems)

  • 진영철;국진선;김양수;홍은성;이민상;이민호;유창영
    • 열처리공학회지
    • /
    • 제5권1호
    • /
    • pp.41-49
    • /
    • 1992
  • The effects of alloying elements on the superplastic properties of Al-Li based alloys had been investigated. The intermediate thermo-mechanical treated (ITMT) Al-2.0wt%Li, Al-2.0wt%Li-1.0wt%Mg, Al-2.0wt%Li-0.12wt%Zr and Al-2.0wt%Li-1.2wt%Cu-1.0wt%Mg-0.12wt%Zr alloys were tested in tension at various temperature (400, 450, 500 and $550^{\circ}C$) and strain rate($6.7{\times}10^{-3}$, $1.0{\times}10^{-2}$, $1.6{\times}10^{-2}$ and $5.0{\times}10^{-2}/sec$). The results were as follows : The superplasticity in binary, ternary and pentanary alloys appeared at 500 to $550^{\circ}C$, and good strain rate for superplasticity. $1.6{\times}10^{-2}/sec{\sim}1.0{\times}10^{-2}/sec$ for a binary alloy and $1.0{\times}10^{-2}/sec{\sim}6.7{\times}10^{-3}/sec$ for ternary and pentanary alloys. A Zr-added ternary alloy had best value of elongation (730%) in four alloys at $550^{\circ}C$ of tension temperature and $1.0{\times}10^{-2}/sec$ of strain rate. The strain rate was greatly dependent on tension temperature and true strain rate was more than 1.0 at all test temperature and strain rate. In binary and Mg-added teranry alloys. the necks were slightly formed and their fracture surface had lips shape, but Zr-added ternary and pentanary alloy fractured along the grain boundary without necking. Their dislocations moved to grain boundary during superplasticity deformation and arranged perpendicular to grain boundary. Super plastic deformation was made by grain boundary slip of dislocation slip creep and model of core and mantle.

  • PDF

동적재료모델에 의한 벌크 비정질 금속의 판재성형성에 대한 고찰 (Dynamic Materials Model-Based Study on the Formability of Bulk Metallic Glass Sheets)

  • 방원규;이광석;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2002
  • Viscoplastic deformation and sheet forming behavior of multicomponent Zr-based bulk metallic glass alloy has been investigated. From a series of mechanical test results, basic processing maps based on Dynamic Materials Model have been constructed to establish feasible forming conditions. Stamping in laboratory scale was then performed at the various stroke speeds and temperatures using a hydraulic press. Failure in macroscopic level was examined to check the validity of constructed processing maps.

  • PDF

용해 및 가공조건 변화가 Ti-10wt.%Ta-10wt.%Nb합금의 미세조직에 미치는 영향 (Effects of Melting and Rolling Condition of Ti-10wt.%Ta-10wt.%Nb Alloy on Microstructure Variation)

  • 이도재;이광민;김민기;이경구
    • 한국주조공학회지
    • /
    • 제22권3호
    • /
    • pp.114-120
    • /
    • 2002
  • A new titanium based alloy, Ti-10Ta-10Nb, has designed to examine the improved mechanical properties and biocompatibility. A specimen of titanium alloy was melted in a consumable vacuum arc furnace and homogenized at $1050^{\circ}C$ for 24 h. The effect of hot rolling on microstructure was estimated after rolling at $400^{\circ}C$ and $800^{\circ}C$ respectively. Surface of melted alloy by consumable vacuum arc melting was consisted of rough surface and it was changed to sound surface by coating of $ZrO_2$ slurry on copper mold surface. The hardness of Ti-10Ta-10Nb alloy increased with the amount of${\alpha}+{\beta}$ phase. Ti-10Ta-10Nb alloy showed $Widmanst{\"{a}}ten$ structure by hot rolling at $800^{\circ}C$ and in the rolling ${\beta}-region$ was negligible effects on microstructure refining.

AI-Li제 합금의 가공열처리에 따른 조직과 기계적성질의 변화 (The Variation of Microstructures and Mechanical Properties by Thermomechanical Treatment in Al-Li Based Alloys)

  • 김기원;우기도;이광로;이민상;이민호;황호을
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.13-20
    • /
    • 1991
  • The present work was aimed to examine the variation of precipitations and mechanical properties by thermomechanical treatments (TMT) in Al-2.19 wt%Li and Al-2.0 wt%Li-0.11 wt%Zr alloys. This study was performed by TEM, SEM observation, DSC, electrical resistance measurement, hardness and tensile strength measurement. First peak of resistivity aged at $90^{\circ}C$ was caused by precipitation of ${\delta}^{\prime}$-precursor phase, and second peak was caused by precipitation of ${\delta}^{\prime}$ phase. According to this result, the precipitation process of Al-2.19 wt%Li alloy was as follow : $SSSS{\rightarrow}{\delta}^{\prime}$-precursor phase ${\rightarrow}{\delta}^{\prime}$ (Coherent ${\rightarrow}$ Semi-coherent) ${\rightarrow}{\delta}$. In a Al-2.0 wt%Li-0.11 wt%Zr ternary alloy, the first peak of resistivity was appeared at initial aging heat-treatment. It is result from exsistant of ${\delta}^{\prime}$-precursor phase. The effect acceleration in a binary alloy was not appeared and the over-aging ternary alloy was accelerated with increase of the reduction rate. It is caused by combination effect of ${\delta}^{\prime}$ and composite phase.

  • PDF

INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

  • Kim, Hyun-Gil;Kim, Il-Hyun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.505-512
    • /
    • 2013
  • Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test) were performed at room temperature at a strain rate of $1.7{\times}10^{-3}s^{-1}$ for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n) variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan;Seo, Deok-Ho;Jung, Kyu-Nam;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.82-88
    • /
    • 2019
  • Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.

Zr계 벌크 비정질 합금의 과냉 액상 영역에서의 점성 유동 현상 연구 (A Study on Viscous Flow of the Zr-based Bulk Metallic Glass in an Undercooled Liquid State)

  • 이광석;하태권;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.265-268
    • /
    • 2004
  • In this present study, mechanical properties of the Zr-Ti-Cu-Ni-Be bulk metallic glass are characterized by compression test over a wide range of temperatures and strain rates. Three different types of deformation behavior have been identified as a result, viz., Newtonian viscous flow, non-Newtonian flow and brittle fracture without plastic deformation. A transition state theory is applicable fur the flow stress - strain rate curve that contains the transition from Newtonian to non-Newtonian flow. Based on the relationship between viscosity and strain rate within undercooled liquid state, we can easily obtain the experimental deformation map and suggest the boundaries among different deformation behavior of this alloy.

  • PDF

액상가압공정으로 제조된 탄탈륨 연속섬유 강화 Zr계 비정질 복합재료의 기계적 성질의 이방성 (Anisotropic Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 이규홍;이상복;이상관;이성학
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.542-549
    • /
    • 2009
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by the liquid pressing process, and their anisotropic mechanical properties were investigated by tensile and compressive tests of $0^{\circ}$(longitudinal)-, $45^{\circ}$-, and $90^{\circ}$(transverse)-orientation specimens. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. When the fiber direction was not matched with the loading direction, the reduction of the strength and ductility was not serious because of excellent fiber/matrix interfacial strength. Observation of the anisotropic deformation and fracture behavior showed the formation of multiple shear bands, the obstruction of crack propagation by fibers, and the deformation of fibers themselves, thereby resulting in tensile elongation of 3%~4% and compressive elongation of 15%~30%. These results suggest that the liquid pressing process was useful for the development of amorphous matrix composites with excellent ductility and anisotropic mechanical properties.

과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발 (Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region)

  • 옥명렬;서진유;홍경태
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.9-14
    • /
    • 2004
  • Recently, various bulk metallic glasses (BMG's) having good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. By using the viscous flow, the very low pressure is needed to deform the materials. In this study, we investigated the structural transition and deformation behavior of Vitreloy 1 (Zr/sub 41.2/Ti/sub 13.8/Cu/sub 12.5/Ni/sub 10/Be/sub 22.5/) using TMA and DSC. We applied the results to the micro forming process. The forming condition was chosen based on the viscosity data from TMA, and Si wafer with micro patterns on the surface was used as a forming die. The deformed surface was analyzed by SEM and 3D Surface Profiling System. The alloy showed good replication of the patterns. Quantitative measurement of roughness was useful to evaluate the replication. Surface condition of the deformed surface was determined by the initial surface condition.